Journal of Materials Science

, Volume 29, Issue 3, pp 778–785 | Cite as

BaZrO3 and BaHfO3: preparation, properties and compatibility with YBa2Cu3O7-x

  • J. L. Zhang
  • J. E. Evetts


Single-phase BaZrO3 and BaHfO3 polycrystalline powders were prepared by solid-state reaction and by spray-drying methods. BaHfO3 ceramic was fabricated at 1300°C for 24 h after pre-sintering HfO2 and BaCO3 powders at 1040°C for 4 h. Homogeneous powders of BaZrO3 and BaHfO3 were also prepared by a spray-drying route. The interaction between YBa2Cu3O7-x (YBCO) and BaHfO3 and BaZrO3 was investigated in the temperature range 900–1060°C using heat-treatment cycles appropriate to composite reaction processing and melt-texturing. The results indicate that neither compound reacts significantly with YBCO at 950°C, and BaHfO3 is still unreactive up to 1000°C. Both of them are also very stable during the melting-texture process. BaHfO3 and BaZrO3 are thus very promising substrate materials and buffer layers for the deposition of thin and thick films and as container materials for bulk YBCO superconductors; BaHfO3 seems to be a more stable material than BaZrO3.


Buffer Layer Thick Film Reaction Processing Substrate Material HfO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Komatsu, O. Tanaka, K. Matusita, M. Yakat and T. Yamashita, Jpn. J. Appl. Phys. 27 (1988) L1025.CrossRefGoogle Scholar
  2. 2.
    C. T. Cheung and E. Ruckenstein, J. Mater. Res. 4 (1989) 1.CrossRefGoogle Scholar
  3. 3.
    M. J. Lima, J. S. Schneider and S. C. Peterson, Appl. Phys. Lett. 53 (1988) 710.CrossRefGoogle Scholar
  4. 4.
    B. R. Powell and R. L. Bloink, J. Mater. Sei. 26 (1991) 6507.CrossRefGoogle Scholar
  5. 5.
    M. Naito, R. H. Hammond, B. Oh, M. R. Hahn, J. W. P. Hsu, P. Rosenthal, A. F. Marshall, M. R. Beasley, T. H. Geballe and A. Kapitulnik, J. Mater. Res. 2 (1987) 713.CrossRefGoogle Scholar
  6. 6.
    H. Nakajima, S. Yamaguchi, K. Iwasaki, H. Morita, H. Fujimori and Y. Fujino, Appl. Phys. Lett. 53 (1988) 1437.CrossRefGoogle Scholar
  7. 7.
    S. Kikkawa and F. Kanamaru, J. Mater. Sei. Lett. 11 (1992) 9.CrossRefGoogle Scholar
  8. 8.
    L. A. Tietz and C. B. Carter, J. Mater. Res. 4 (1989) 1072.CrossRefGoogle Scholar
  9. 9.
    G. Stenstrop and J. Engell, J. Less-Common Metals 164 (1990) 200.CrossRefGoogle Scholar
  10. 10.
    T. F. Limar and A. I. Savoskina, Russ. J. Inorg. Chem. 15 (1970) 1360.Google Scholar
  11. 11.
    H. E. Swanson, N. T. Gilfrich and G. M. Ugrinic, NBS Circular, 539, 5 (1955) 8.Google Scholar
  12. 12.
    R. Scholder, D. Rade and H. Schwarz, Z. Anorg. Allg. Chem. 362 (1968) 149.CrossRefGoogle Scholar
  13. 13.
    N. A. Godina and E. K. Keler, Russ. J. Inorg. Chem. 4 (1959) 401.Google Scholar
  14. 14.
    P. Turlier and M. Prettre, C. R. Hebd. Séances Acad. Sci. 248 (1959) 2572.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. L. Zhang
    • 1
  • J. E. Evetts
    • 1
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations