Journal of Materials Science

, Volume 29, Issue 3, pp 749–753 | Cite as

Mechanism of adhesion improvement in ion-beam mixed Cu/SiO2

  • K. H. Chae
  • H. G. Jang
  • I. S. Choi
  • S. M. Jung
  • K. S. Kim
  • C. N. Whang


A thin copper layer (35 nm) deposited on SiO2 has been subjected to ion-beam mixing with 80 keV Ar+ at room temperature, 550 and 650 K. Interfacial properties of irradiated samples were investigated using Rutherford backscattering spectroscopy, grazing-angle X-ray diffraction, X-ray photo-electron spectroscopy and scratch testing. The adhesion of the copper film was improved by a factor of three at a dose of 1.5 × 1016 Ar+ cm−2 by the ion-beam mixing at room temperature, while the high-temperature ion-beam mixing enhanced the adhesion by a factor of five. Ballistic mixing plays a role in the improvement of adhesion for the room-temperature ion mixing, and the creation of Cu2O phase induced by ion-beam mixing contributes to the enhancement of adhesion at high temperature.


Polymer Copper Spectroscopy SiO2 Cu2O 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Pretorius, J. M. Harris and H.-A. Nicolet, Solid State Electron, 21 (1978) 667.CrossRefGoogle Scholar
  2. 2.
    J. E. E. Baglin, Nucl. Instrum. Meth. B65 (1992) 119.CrossRefGoogle Scholar
  3. 3.
    Idem, in “Ion Beam Modification of Insulators”, edited by P. Mazzoldi and G. W. Arnold (Elsevier, Amsterdam, 1987) Ch. 15.Google Scholar
  4. 4.
    G. J. Clark, J. E. E. Baglin F. M. D'Heurie, C. W. White, G. Fariow and J. Narayan, Mater. Res. Soc. Symp. Proc. 27 (1984) 55.CrossRefGoogle Scholar
  5. 5.
    C Weaver, J. Vac. Sci. Technol. 12 (1975) 18.CrossRefGoogle Scholar
  6. 6.
    L. R. Doolittle, Nucl. Instrum. Meth. B15 (1986) 227.CrossRefGoogle Scholar
  7. 7.
    W. L. Johnson, Y. T. Cheng M. Van Rossum and M.-A. Nicolet ibid. B7/8 (1985) 657.CrossRefGoogle Scholar
  8. 8.
    B. M. Paine and R. S. Aberback, ibid. B7/8 (1985 666.CrossRefGoogle Scholar
  9. 9.
    C. N. Whang, J. H. Song, K. H. Chae, H. K. Kim and D. W. Moon, ibid. B71 (1992) 271.Google Scholar
  10. 10.
    L. Ramana, G. Fuchs, M. Brunel, G. Massouras, B. Canut, R. Brenier, S. M. M. Ramos and P. Thevenard, ibid. B59/60 (1991) 567.CrossRefGoogle Scholar
  11. 11.
    M. Scrocco, Chem. Phys. Lett. 63 (1979) 52.CrossRefGoogle Scholar
  12. 12.
    A. Rosencwaig and G. K. Wertheim, J. Electron Spectrosc. 1 (1973) 493.CrossRefGoogle Scholar
  13. 13.
    S. W. Gaarenstroom and N. Winograd, J. Chem. Phys. 67 (1977) 3500.CrossRefGoogle Scholar
  14. 14.
    J. E. E. Baglin, A. G. Schrott, R. D. Thomson. K. N. Tu and A. Segmuller, Nucl. Instrum. Meth. B19/20 (1987) 782.CrossRefGoogle Scholar
  15. 15.
    L. B. Pankratz, “Thermnodynamic Properties of Elements and Oxides” (United States Department of the Interior, New york 1969) p. 133.Google Scholar
  16. 16.
    L. S. Hung, M. Nastasi, J. Gyulai and J. W. Mayer, Appl. Phys. Lett. 42 (1983) 672.CrossRefGoogle Scholar
  17. 17.
    P. Villars and L. D. Caivert, “Pearson's Handbook of Crystallographic Data for Intermetallic Phases” (ASM, Ohio, 1985) p. 1994.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. H. Chae
    • 1
  • H. G. Jang
    • 1
  • I. S. Choi
    • 1
  • S. M. Jung
    • 1
  • K. S. Kim
    • 1
  • C. N. Whang
    • 1
  1. 1.Department of PhysicsYonsei UniversitySeolKorea

Personalised recommendations