Journal of Materials Science

, Volume 29, Issue 3, pp 721–727 | Cite as

Chemorheology of epoxy resin Part I epoxy resin cured with tertiary amine

  • K. C. Cheng
  • W. Y. Chiu
  • K. H. Hsieh
  • C. C. M. Ma


Epoxy resin was cured with a tertiary amine. The viscosity and dynamic mechanical properties during the curing reaction were measured by a cone-and-plate rheometer. A dual Arrhenius viscosity model was modified to predict the viscosity profile before gelation during the non-isothermal curing. The viscosity profile coincided with the experimental data. The activation energy of this system calculated using the modified model was 19.8 kcal mol−1 for the first region, and 17.3 kcal mol−1 for the second region. After gelation, the dynamic complex modulus was related to the reaction kinetics according to the rubber elasticity theory, and the activation energy was 15.3 kcal mol−1. Furthermore, the gelling point can be estimated from the rheological measurements.


Viscosity Activation Energy Epoxy Rubber Reaction Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. A. May, in “Epoxy Resins-Chemistry and Technology” edited by C. A. May (Dekker, New York, 1988) p. 1.Google Scholar
  2. 2.
    L. Nicolas and A. Apicella, Pure Appl. Chem. 57 (1985) 1701.CrossRefGoogle Scholar
  3. 3.
    G. A. Senich, W. J. MacKnight and N. S. Schneider, Polym. Eng. Sci. 19 (1979) 313.CrossRefGoogle Scholar
  4. 4.
    C. Y. Yap and H. L. Williams, ibid 22 (1982) 254.CrossRefGoogle Scholar
  5. 5.
    M. Adam, M. Delsanti and D. Durand, Macromolecules 18 (1985) 2285.CrossRefGoogle Scholar
  6. 6.
    N. S. Schneider, J. F. Sprouse, G. L. Hagnauer and J. K. Gillham, Polym. Eng. Sci. 19 (1979) 304.CrossRefGoogle Scholar
  7. 7.
    F. Chambon, Z. S. Petrovic, W. J. MacKnight and H. H. Winter, Macromolecules 19 (1986) 2146.CrossRefGoogle Scholar
  8. 8.
    B. Z. Jang and G. H. Zhu, J. Appl. Polym. Sci. 31 (1986) 2627.CrossRefGoogle Scholar
  9. 9.
    W. X. Zukas, Polym. Eng. Sci. 29 (1989) 1553.CrossRefGoogle Scholar
  10. 10.
    M. S. Heise and G. C. Martin, ibid 30 (1990) 83.CrossRefGoogle Scholar
  11. 11.
    J. L. Hans, S. M. Tseng, J. H. Mai and K. H. Hsieh, Angew Makromol. Chem. 182 (1990) 193.CrossRefGoogle Scholar
  12. 12.
    R. P. White Jr., Polym. Eng. Sci. 14 (1974) 50.CrossRefGoogle Scholar
  13. 13.
    M. B. Roller, ibid 15 (1975) 406.CrossRefGoogle Scholar
  14. 14.
    , ibid 26 (1986) 432.CrossRefGoogle Scholar
  15. 15.
    F. G. Mussatti and C. W. Macosko, ibid 13 (1973 273.CrossRefGoogle Scholar
  16. 16.
    P. E. Willard ibid 14 (1974) 273.CrossRefGoogle Scholar
  17. 17.
    C. D. Han and K. W. Lem, J. Appl. Polym. Sci. 28 (1983) 3155.CrossRefGoogle Scholar
  18. 18.
    C. M. Tung and P. J. Dynes ibid 27 (1982 569.CrossRefGoogle Scholar
  19. 19.
    H. H. Winter, Polym. Eng. Sci. 21 (1987) 1698.CrossRefGoogle Scholar
  20. 20.
    J. K. Gillham, ibid. 19 (1979) 319.CrossRefGoogle Scholar
  21. 21.
    Idem, ibid 19 (1979) 676.CrossRefGoogle Scholar
  22. 22.
    A. Y. Malkin and S. G. Kulichikhin, Adv. Polym. Sci. 101 (1991) 217.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. C. Cheng
    • 1
  • W. Y. Chiu
    • 1
  • K. H. Hsieh
    • 1
  • C. C. M. Ma
    • 2
  1. 1.Department of Chemical EngineeringNational Taiwan UniversityTaipei, TaiwanRepublic of Korea
  2. 2.Department of Chemical EngineeringNational Tsing Hua UniversityHsinchu, TaiwanRepublic of Korea

Personalised recommendations