Advertisement

Journal of Materials Science

, Volume 29, Issue 3, pp 708–713 | Cite as

High-temperature creep and resultant anisotropy in ultrasonic velocity in isotropic graphite

  • M. Narisawa
  • M. Adachi
  • I. Souma
Papers

Abstract

Plastic deformation of isotropic graphite in the vicinity of 2500 °C was studied using an Instron-type testing machine. The load-deflection curve was found to show a proportional limit at high temperature. Creep curves of graphite were also measured and were simulated by an empirical equation based on parabolic creep. Following the creep tests, ultrasonic velocity in the elongated graphite was measured. The velocity showed 5%–20% decrease after the creep. Below 2500 °C, the rate of velocity decrease along the elongation axis was always larger than that across the elongation axis. Above 2500 °C, this behaviour was reversed with the rate of velocity decrease across the elongation axis being the larger. The rate of decrease appeared to depend firstly on temperature and secondly on stress.

Keywords

Polymer Anisotropy Graphite Plastic Deformation Testing Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Malmstrom, R. Klein and L. Green Jr., J. Appl. Phys. 22 (1951) 593.CrossRefGoogle Scholar
  2. 2.
    L. Green Jr., J. Appl. Mech. 20 (1953) 289.Google Scholar
  3. 3.
    I. B. Mason and R. H. Knibbs, Nature 188 (1960) 33.CrossRefGoogle Scholar
  4. 4.
    J. F. Andrew and S. Sato, Carbon 1 (1964) 225.CrossRefGoogle Scholar
  5. 5.
    E. G. Zukas and W. V. Green, Nature 212 (1966) 1454.CrossRefGoogle Scholar
  6. 6.
    W. V. Green and E. G. Zukas, Electrochem. Tech. 5 (1967) 203.Google Scholar
  7. 7.
    E. G. Zukas and W. V. Green, Carbon 6 (1968) 101.CrossRefGoogle Scholar
  8. 8.
    W. V. Kotlensky, ibid 4 (1966) 209.CrossRefGoogle Scholar
  9. 9.
    G. M. Jenkins, ibid 9 (1969) 9CrossRefGoogle Scholar
  10. 10.
    G. M. Jenkins, in “Chemistry and Physics of Carbon 11” (Marcel Dekker, 1973), p. 189.Google Scholar
  11. 11.
    S. Sato, A. Kurumada, H. Iwaki and Y. Komatsu, Carbon 27 (1989) 791.CrossRefGoogle Scholar
  12. 12.
    M. Narisawa, M. Adadhi and I. Souma, ibid 30 (1992) 815.CrossRefGoogle Scholar
  13. 13.
    R. E. Smith, J. Appl. Phys. 43 (1972) 2555.CrossRefGoogle Scholar
  14. 14.
    D. E. Soule and C. W. Nezbeda, ibid 39 (1968) 5122.CrossRefGoogle Scholar
  15. 15.
    N. F. Mott, Philos. Mag. 44 (1953) 742.CrossRefGoogle Scholar
  16. 16.
    S. Amelinckx and P. Delavignette, Phys. Rev. Lett. 5 (1960) 50.CrossRefGoogle Scholar
  17. 17.
    S. Amelinckx and P. Delavignette, J. Appl. Phys. 31 (1960) 2126.CrossRefGoogle Scholar
  18. 18.
    C. Baker and A. Kelly, Philos. Mag. 9 (1964) 927.CrossRefGoogle Scholar
  19. 19.
    E. N. da C. Andrade, ibid 7 (1962) 2003.CrossRefGoogle Scholar
  20. 20.
    P. Felthan and J. D. Meakin, Acta Metall. 7 (1959) 614.CrossRefGoogle Scholar
  21. 21.
    T. Oku and M. Eto, Carbon 11 (1973 638.CrossRefGoogle Scholar
  22. 22.
    M. Eto and T. Oku, ibid 29 (1991) 11.CrossRefGoogle Scholar
  23. 23.
    E. J. Seldin and C. W. Nezbeda, J. Appl. Phys. 41 (1970) 3389.CrossRefGoogle Scholar
  24. 24.
    T. Tsuzuku, Carbon 1 (1963) 25.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Narisawa
    • 1
  • M. Adachi
    • 1
  • I. Souma
    • 1
  1. 1.Government Industrial Research Institute of OsakaIkeda, OsakaJapan

Personalised recommendations