Advertisement

Journal of Materials Science

, Volume 29, Issue 3, pp 664–668 | Cite as

Fabrication of silicon membrane using fusion bonding and two-step electrochemical etch-stopping

  • B. K. Ju
  • M. H. Oh
  • K. H. Tchah
Papers

Abstract

A new type of silicon membrane structure was fabricated using wafer fusion bonding and two-step electrochemical etch-stopping methods. An “active wafer” of p-type epi/n-type epi/p-type substrate was first elctrochemically etched to form a shallow cavity on the p-type epitaxial layer. Then, the cavity-formed side was fusionally bonded with p-type silicon “working wafer” and, afterwards, the p-type substrate of the active wafer part was removed by a second electrochemical etch-stopping leaving only the n-type membrane on the shallow cavity. Using the new membrane structure in mechanical sensors, more precise control of cavity depth and membrane thickness was achievable and the influence of crystalline imperfections on the sensing circuits located near the bonding seam was avoidable.

Keywords

Polymer Silicon Membrane Structure Epitaxial Layer Cavity Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Christel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon Jr and J. Bryzek, Sensors Actuat. A21-A23 (1990) 84.CrossRefGoogle Scholar
  2. 2.
    K. Petersen, J. Brown, T. Vermeulen, P. Barth, J. Mallon Jr and J. Bryzek, ibid. A21–A23 (1990) 96.CrossRefGoogle Scholar
  3. 3.
    P.W. Barth, ibid. A21–A23 (1990) 919.CrossRefGoogle Scholar
  4. 4.
    A. Reisman, M. Berkenblit, S. A. Chan, F. B. Kaufman and D. C. Green, J. Electrochem. Soc. 126 (1979) 1406.CrossRefGoogle Scholar
  5. 5.
    X.-P. Wu, Q.-H. Wu and W. H. Ko, Senors Actuat. 9 (1986) 333.CrossRefGoogle Scholar
  6. 6.
    H. Hirata, S. Suwazono and H. Tanigawa, J. Electrochem. Soc. 134 (1987) 2037.CrossRefGoogle Scholar
  7. 7.
    R. L. Gealer, H. K. Karsten and S. M. Ward ibid. 135 (1988) 1180.CrossRefGoogle Scholar
  8. 8.
    B. Kloeck, S. D. Collins, N. F. De Rooji and R. L. Smith, IEEE Trans. Electron Devices 36 (1989) 663.CrossRefGoogle Scholar
  9. 9.
    Y. P. Xu and R. S. Huang, J. Electrochem. Soc. 137 (1990) 948.CrossRefGoogle Scholar
  10. 10.
    M. Matsuoka, Y. Arai and Y. Yoshida, Jpn J. Appl. Phys. 27 (1988) 784.CrossRefGoogle Scholar
  11. 12.
    B. K. Ju, M. H. Oh and K. H. Tchah, J. Mater. Sci. 28 (1993) 1168.CrossRefGoogle Scholar
  12. 13.
    J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann and J. A. Pals, Jpn. J. Appl. Phys. 28 (1989) 1426.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • B. K. Ju
    • 1
  • M. H. Oh
    • 1
  • K. H. Tchah
    • 2
  1. 1.Division of Electronics and Information TechnologyKorea Institute of Science and TechnologySeoulKorea
  2. 2.Department of Electronics EngineeringKorea University Anam-dongSeoulKorea

Personalised recommendations