Advertisement

Journal of Materials Science

, Volume 29, Issue 3, pp 645–651 | Cite as

Diffusion controlled growth or dissolution of long cylindrical particles

  • J. R. Frade
Papers

Abstract

The analytical solutions for growth from zero initial radius of long cylindrical particles are extended to include arbitrary changes in volume. These analytical solutions are used to demonstrate the accuracy of numerical solutions required to obtain solutions for dissolution and for the initial stage of growth from finite initial size.

Keywords

Polymer Initial Size Initial Radius Cylindrical Particle Arbitrary Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Y. Kim and A. S. Yue, J. Cryst. Growth 79 (1986) 874.CrossRefGoogle Scholar
  2. 2.
    V. K. Pinus and P. L. Taylor, Phys. Rev. B 32 (1985) 5362.CrossRefGoogle Scholar
  3. 3.
    J. Crank, “The Mathematics of Diffusion”, 2nd Edn. (Clarendon, Oxford, 1979) p. 69, 89.Google Scholar
  4. 4.
    C. Zener, J. Appl. Phys. 20 (1949) 950.CrossRefGoogle Scholar
  5. 5.
    F. C. Frank, Proc. Roy. Soc. A201 (1950) 586.Google Scholar
  6. 6.
    L. E. Scriven, Chem. Eng. Sci. 10 (1959) 1.CrossRefGoogle Scholar
  7. 7.
    D. W. Readey and A. R. Cooper, ibid. 21 (1966) 917.CrossRefGoogle Scholar
  8. 8.
    M. Cable and D. J. Evans, J. Appl. Phys. 38 (1967) 2899.CrossRefGoogle Scholar
  9. 9.
    J. L. Duda and J. S. Vrentas, A.I.Ch.E.J. 15 (1969) 351.CrossRefGoogle Scholar
  10. 10.
    Idem, J. Heat Mass Transfer 14 (1971) 395.CrossRefGoogle Scholar
  11. 11.
    M. Cable and J. R. Frade, J. Mater. Sci. 22 (1987) 149.CrossRefGoogle Scholar
  12. 12.
    Idem, ibid. 22 (1987) 919.CrossRefGoogle Scholar
  13. 13.
    Idem, Chem. Eng. Sci. 42 (1987) 2525.CrossRefGoogle Scholar
  14. 14.
    J. Szekely and G. P. Martins, ibid. 26 (1971) 147.CrossRefGoogle Scholar
  15. 15.
    J. Szekely and S. D. Fang, ibid. 28 (1973) 2127.CrossRefGoogle Scholar
  16. 16.
    O. Simmich and H. Loffler, Phys. Status Solidi. 65 (1981) 153.CrossRefGoogle Scholar
  17. 17.
    G. Valensi, C R. Acad. Sci. 201 (1935) 602.Google Scholar
  18. 18.
    G. D. Smith, “Numerical Solutions of Partial Differential Equations: Finite Difference Methods, 2nd Edn (Oxford University Press, Oxford, 1978) 11.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. R. Frade
    • 1
  1. 1.Departamento de Engenharia Cerâmica e do VidroUniversidade de AveiroAveiroPortugal

Personalised recommendations