Journal of Materials Science

, Volume 29, Issue 3, pp 632–639 | Cite as

Acoustic emission data on delayed damage processes in the vicinity of defects in fibre-reinforced plastics

  • A. P. Tishkin
  • G. N. Gubanova
  • A. M. Leksovski
  • V. E. Yudin


Analysis of the time intervals between acoustic emission (AE) signals in composites makes it possible to study defect mechanisms induced by stress transfer near the previously arisen defect. Unidirectional carbon fibre-reinforced plastics (CFRP) with matrices of different plasticity have been investigated during tensile deformation. There is a characteristic delay time, Τ1 between the correlated appearance of defects. For these materials, Τ1 ranges from 50–500 Μs. In the model considered here, Τ1 is determined by the time for which the zone of plastic deformation formed at the place of fibre breaking and widening during local stress relaxation, is extended to the neighbouring fibres. Thus, the fibre is overloaded, which may lead to its breaking. The effect of viscoelastic properties on Τ1 is discussed. This delay time decreases with the plasticity of the matrix. These data also show that the zone of localized deformation at the broken fibre can cover several layers of neighbouring fibres.


Acoustic Emission Stress Relaxation Viscoelastic Property Localize Deformation Emission Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Zweben, AIAA J. 6 (1968) 2325.CrossRefGoogle Scholar
  2. 2.
    C. Zweben and B. W. Rosen, J. Mech. Phys. Solids 18 (1970) 189.CrossRefGoogle Scholar
  3. 3.
    R. E. Pitt and S. L. Phoenix, Int. J. Fract. 22 (1983) 243.CrossRefGoogle Scholar
  4. 4.
    S. Ochiai and K. Osamura, J. Mater. Sci. 24 (1989) 3536.CrossRefGoogle Scholar
  5. 5.
    A. S. Ovchinskij and E. N. Sakharova, Mech. Kompos. Mater. (USSR) 4 (1981) 620.Google Scholar
  6. 6.
    V. S. Krivobodrov and A. M. Leksovski, ibid. 6 (1987) 999.Google Scholar
  7. 7.
    K. Friedrich, R. Walter, L. A. Carlsson, A. J. Smiley and J. W. Gillespie Jr, J. Mater. Sci. 24 (1989) 3387.CrossRefGoogle Scholar
  8. 8.
    J. Becht, H.-J. Shwalbe and J. Elsenblatter, Composites 7 (1976) 245.CrossRefGoogle Scholar
  9. 9.
    A. M. Leksovski, in “Deformation and fracture kinetics of composite materials”, edited by S. P. Nikanorov and A. M. Leksovski (FTI, Leningrad, 1983) p. 112 (in Russian).Google Scholar
  10. 10.
    I. Narisawa and H. Oba, J. Mater. Sci. 19 (1984) 1777.CrossRefGoogle Scholar
  11. 11.
    R. L. Mechan and I. V. Mullin, J. Compos. Mater. 5 (1971) 266.CrossRefGoogle Scholar
  12. 12.
    K. Yamaguchi, H. Oyaizu, K. Kudoh and Y. Nagata, “Progress in Acoustic Emission III” (Japanese Society NDI, Zao, 1986) p. 594.Google Scholar
  13. 13.
    A. Okada, T. Yasujima and T. Tazawa, Trans. Jpn Inst. Metals 28 (1987) 1004.CrossRefGoogle Scholar
  14. 14.
    M. Chefaroui, J. Roget, A. Lemascon and M. Jeanville, in “Proceedings of 6th International Conference on Composite Materials (ICCM-VI/ECCM-2)”, London, July 1987, Vol. 1, edited by F. L. Matthews, N. C. R. Buskell, J. M. Hodgkinson and J. Morton (Elsevier, London, 1987) p. 424.Google Scholar
  15. 15.
    M. Rochat, R. Fougeret and P. Fleischmann, J. Acoust. Emission 9 (1990) 91.Google Scholar
  16. 16.
    M. R. Pigott, J. Mater. Sci. 23 (1988) 3778.CrossRefGoogle Scholar
  17. 17.
    A. P. Braginskij, in “Fracture Physics and Mechanics of Composite Materials”, edited by A. M. Leksovski (FTI, Leningrad, 1986) p. 35 (in Russian).Google Scholar
  18. 18.
    A. P. Tishkin and A. M. Leksovski, Pis'ma v ZhTF 14 (1988) 1463 (in Russian).Google Scholar
  19. 19.
    A. M. Leksovski, G. N. Gubanova, N. A. Sukhanova and G. H. Narzullaev, in “Physics of Strength of Composite Materials”, edited by A. M. Leksovski (FTI, Leningrad, 1988) p. 69 (in Russian).Google Scholar
  20. 20.
    D. R. Cox and A. W. Lewis, “The statistical analysis of series of events” (Methuen, London, 1966).CrossRefGoogle Scholar
  21. 21.
    J. Neyman and E. L. Scott, J. Roy. Statist. Soc. B 20 (1958) 1.Google Scholar
  22. 22.
    D. Vere-Jones, ibid. 32 (1970) 1.Google Scholar
  23. 23.
    J. M. Lifshitz and A. Rotem, Fibre Sci. Technol. 3 (1970) 1.CrossRefGoogle Scholar
  24. 24.
    A. Rotem and J. Baruch, J. Mater. Sci. 9 (1974) 1789.CrossRefGoogle Scholar
  25. 25.
    A. M. Leksovski, A. Abdumanonov, R. M. Akhunov, G. H. Narzullaev and A. P. Tishkin, Mekh. Kompos, Mater. 6 (1984) 1004.Google Scholar
  26. 26.
    D. Broek, “Elementary Engineering Mechanics”, 3rd Edn (Martinus Nijhoff. The Hague, 1984).Google Scholar
  27. 27.
    S. L. Bazhenov and A. A. Berlin, J. Mater. Sci. 25 (1990) 3941.CrossRefGoogle Scholar
  28. 28.
    D. S. Dugdale, J. Mech. Phys. Sol. 8 (1960) 100.CrossRefGoogle Scholar
  29. 29.
    C. G'sell, D. Jacques and J. P. Favre, J. Mater. Sci. 25 (1990) 2004.CrossRefGoogle Scholar
  30. 30.
    V. I. Dotsenko, Phys. Status Solidi (b) 93 (1979) 11.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. P. Tishkin
    • 1
  • G. N. Gubanova
    • 1
  • A. M. Leksovski
    • 1
  • V. E. Yudin
    • 2
  1. 1.A. F. Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations