Journal of Materials Science

, Volume 29, Issue 3, pp 569–583 | Cite as

Role of oxygen diffusion in polymer ageing: kinetic and mechanical aspects

  • L. Audouin
  • V. Langlois
  • J. Verdu
  • J. C. M. de Bruijn


For an ageing process involving the consumption of a small molecule (typically O2 or H2O) by reaction with the polymer, there are critical conditions of reaction rate and/or thickness above which the process becomes kinetically controlled by the diffusion of the small molecule in the polymer. Suitable lifetime prediction models must then involve the thickness distribution of reaction products. This latter can be predicted from Fick's law, modified by a term relative to the rate of consumption of the diffusing species by the chemical reaction. Some problems related to the use of this approach are examined here. It appears that, in the most frequent case, the thickness of the degraded layer is of the order of magnitude of D/k, where D is the diffusion coefficient and k the pseudo-first-order rate constant for reactant consumption. Some examples of application related to photochemical, radiochemical and thermochemical ageing are examined. It can, for instance, be shown that in photochemical or radiochemical ageing, the thickness of the oxidized layer (TOL) is proportional to the reciprocal of lβ, where l is the radiation intensity and Β an exponent depending essentially on the radical chain mechanism. It is generally expected that in the case of thermal ageing, the TOL is a decreasing function of the temperature. Some consequences of diffusion control on accelerated and natural ageing methods are briefly examined. The consequences of the ageing-induced “skin-core” structure due to the diffusion control are examined. The main features of the observed polymer embrittlement can be explained in terms of fracture mechanics.


Small Molecule Radiation Intensity Oxygen Diffusion Thermal Ageing Thickness Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Golike and S. W. Lazoski, J. Phys. Chem. 64 (1960) 895.CrossRefGoogle Scholar
  2. 2.
    G. C. Furneaux, K. J. Leddury and A. Davis, Polym. Degrad. Stab. 3 (1986) 431.CrossRefGoogle Scholar
  3. 3.
    A. V. Cunliffe and A. Davis, ibid 4 (1982) 17.CrossRefGoogle Scholar
  4. 4.
    T. Seguchi, S. Hashimuto, K. Akakawa, N. Hayakawa, W. Kawakami and J. Kuryama, Rdiat. Phys. Chem. 17 (1981) 191.Google Scholar
  5. 5.
    S. P. Fairgreve and J. R. McCallum, Polym. Degrad. Stab. 11 (1985) 251.CrossRefGoogle Scholar
  6. 6.
    J. R. Puig, “Les techniques de l/Ingéniew-Génie nucléaire” (Paris) B 3770 (1982) 1.Google Scholar
  7. 7.
    M. V. Belusova and V. D. Skirda Acta Polym. 10 (1985) 36.Google Scholar
  8. 8.
    G. Papet, L. Audouin-Jirackova and J. Verdu, Radiat. Phys. Chem. 33 (1989) 329.Google Scholar
  9. 9.
    S. G. Kiryushkin and Y. A. Shlyapnikov, Polym. Degrad. Stab. 23 (2) 185.Google Scholar
  10. 10.
    K. T. Gillen and R. L. Clough, in “Handbook of Polymer Science and Technology”, Vol. 2, edited by N. P. Cheremisinoff (Dekker, New York, 1989) p. 170.Google Scholar
  11. 11.
    G. S. Park and J. Crank, “Diffusion in Polymers” (Academic, New York, 1981) pp. 4–20.Google Scholar
  12. 12.
    L. Audouin and J. Verdu, ACS Symp. Ser. 475 (1991) 473.CrossRefGoogle Scholar
  13. 13.
    M. Lehuy, thesis, ENSAM, Paris (1990).Google Scholar
  14. 14.
    Idem, Polym. Degrad. Stab. in press.Google Scholar
  15. 15.
    J. Petruj and J. Marchal, ibid 16 (1980) 27.Google Scholar
  16. 16.
    A. Huvet, J. Philippe and J. Verdu, Euro. Polym. J. 14 (1978) 709.CrossRefGoogle Scholar
  17. 17.
    K. T. Gillen and R. L. Clough, J. Polym. Sci., Polym. Chem. Edn. 19 (1985) 2041.Google Scholar
  18. 18.
    H. Wilski, Radiat. Phys. Chem. 29 (1) (1987) 1.Google Scholar
  19. 19.
    de J. C. M. Bruijn, thesis, Delft University Press, 1992.Google Scholar
  20. 20.
    T. G. Ryan, P. D. Calvert and N. C. Billingham, “Stabilization and Degradation of Polymers”, ACS Chemistry Series Vol. 169 p. 261.Google Scholar
  21. 21.
    X. Jouan and L. Gardette, Polym. Commun. 28 (1987) 239.Google Scholar
  22. 22.
    V. Langlois, M. Meyer, L. Audouin and J. Verdu, Polym. Degrad. Stab. 40 (1993) 399.CrossRefGoogle Scholar
  23. 23.
    J. L. Gardon, J. Coll. Interf. Sci 59 (1977) 582.CrossRefGoogle Scholar
  24. 24.
    Idem, Progr. Org. Coatings 5 (1977) 1.CrossRefGoogle Scholar
  25. 25.
    H. H. Kausch, in “Interrelations between Processing, Structure and Properties of Polymeric materials”, edited by J. C. Seferis and P. S. Theocaris (Elsevier, Amsterdam, 1984) p. 363.Google Scholar
  26. 26.
    J. Pabiot and J. Verdu, Polym. Eng. Sci. 21 (1) (1981) 32.CrossRefGoogle Scholar
  27. 27.
    R. J. Gardner and J. R. Martin, J. Appl. Polym. Sci. 24 (1979) 1269.CrossRefGoogle Scholar
  28. 28.
    B. Mortaigne, thesis, ENSAM, Paris (1989).Google Scholar
  29. 29.
    J. Verdu, B. Mortaigne and P. A. Hoarau, in Proceedings of 11th International Conference on Advances in the Stabilization and Controlled Degradation of Polymers, Luzern, 24–26 May 1989.Google Scholar
  30. 30.
    C. B. Bucknall and D. G. Street, J. Appl. Polym. Sci. 12 (1968) 1311.CrossRefGoogle Scholar
  31. 31.
    G. M. Ruhnke and L. F. Biritz, Plast. Polym. 6 (1972) 118.Google Scholar
  32. 32.
    E. Priebe and J. Stabenow, Kunststoffe 64 (1974) 497.Google Scholar
  33. 33.
    D. J. Carlsson and D. Wiles, J. Macromol. Sci. C 14 (1) (1976) 65.CrossRefGoogle Scholar
  34. 34.
    M. D. Wolkowicz and S. K. Gaggar, Polym. Eng. Sci. 21 (1981) 571.CrossRefGoogle Scholar
  35. 35.
    P. So and L. J. Broutman, ibid. 22 (1982) 888.CrossRefGoogle Scholar
  36. 36.
    L. Rolland, K. Thomson, S. Mostovoy and L. J. Broutman, in Proceedings of International Conference on Deformation, Yield and Fracture of Polymers, Cambridge, 1982.Google Scholar
  37. 37.
    L. Rolland and L. J. Broutman, in Proceedings of ANTEC 83, May 1983 (1983) p. 451.Google Scholar
  38. 38.
    N. Rosenzweig and L. J. Broutman, ibid. p. 455.Google Scholar
  39. 39.
    L. Rolland and L. J. Broutman, in Proceedings of ANTEC 85 (1985) p. 634.Google Scholar
  40. 40.
    P. So and L. J. Broutman, ibid. p. 639.Google Scholar
  41. 41.
    L. J. Broutman and L. Rolland, in Proceedings of ANTEC 86, April 1986 (1986) p. 600.Google Scholar
  42. 42.
    G. E. Schoolenberg, thesis, Technical University of Delft (1988).Google Scholar
  43. 43.
    Idem, J. Mater. Sci. 23 (1988) 1580.CrossRefGoogle Scholar
  44. 44.
    D. W. Van Krevelen and P. J. Hoftyzer in “Properties of Polymers” (Elsevier Scientific, New York 1976) p. 410.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • L. Audouin
    • 1
  • V. Langlois
    • 1
  • J. Verdu
    • 1
  • J. C. M. de Bruijn
    • 2
  1. 1.Ecole Nationale Supérieure d'Arts et MétiersParisFrance
  2. 2.Laboratory for Mechanical ReliabilityDelft University of TechnologyLeeghwaterstraat 35The Netherlands

Personalised recommendations