Advertisement

Current Genetics

, Volume 8, Issue 2, pp 93–97 | Cite as

Mapping of rRNA genes by integration of hybrid plasmids in Schizosaccharomyces pombe

  • Takashi Toda
  • Yukinobu Nakaseko
  • Osami Niwa
  • Mitsuhiro Yanagida
Article

Summary

The major rRNA genes of the fission yeast Schizosaccharomyces pombe were mapped on chromosome III by plasmid integration. The integration vector YIp33 containing S. cerevisiae LEU2 gene was combined with the S. pombe rDNA. Since LEU2 complements S. pombe leu1 deficiency, it could be used as the genetic marker for integration. The 10.4 kb rDNA repeat contained ARS sequence, and therefore 2.4 kb and 0.7 kb subfragments not containing ARS were subcloned into YIp33 and transformed leu1 S. pombe cells to Leu+. Genetic analyses of the transformants indicated that the integrated rDNA resides in the long arm of the shortest chromosome III, tightly linked to ade5 (1.4 cM). This result is consistent with our previous finding that the DAPI-stained smallest chromosomes were associated with the nucleolus (Umesono et al. 1983).

Key words

Integration vector Nucleolar DNA rRNA gene mapping Schizosaccharomyces pombe 

Abbreviations

ARS

autonomously replicating sequence

DAPI

4′,6-diamidino-2-phenylindole

kb

kilo base pairs

rDNA

DNA segment containing ribosomal RNA genes

rRNA

ribosomal RNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beach D, Nurse P (1981) Nature 290:140–142CrossRefGoogle Scholar
  2. Beach D, Piper M, Nurse P (1982) Mol Gen Genet 187:326–329CrossRefGoogle Scholar
  3. Bostock CJ (1970) Exptl Cell Res 60:16–26CrossRefGoogle Scholar
  4. Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24CrossRefGoogle Scholar
  5. Fournier P, Gaillardin C, de Loucencourt L, Heslot H, Lang BF, Kaudewitz F (1982) Curr Genet 6:31–38CrossRefGoogle Scholar
  6. Gutz H, Heslot H, Leupold U, Loprieno N (1974) In: King (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 395–446Google Scholar
  7. Kohli J, Hottinger H, Munz P, Strauss A, Thuriaux P (1977) Genetics 87:471–489PubMedPubMedCentralGoogle Scholar
  8. Long EO, Dawid IB (1980) Ann Rev Biochem 49:727–764CrossRefGoogle Scholar
  9. Petes TD, Botstein D (1977) Proc Natl Acad Sci USA 74:5091–5095CrossRefGoogle Scholar
  10. Schaak J, Mao J, Soll D (1982) Nucleic Acids Res 10:2851–2864CrossRefGoogle Scholar
  11. Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039CrossRefGoogle Scholar
  12. Szostak JW, Wu R (1979) Plasmid 2:536–554CrossRefGoogle Scholar
  13. Tabata S (1981) Nucleic Acids Res 9:6429–6437CrossRefGoogle Scholar
  14. Thuriaux P, Nurse P, Carter B (1978) Mol Gen Genet 161:215–220PubMedGoogle Scholar
  15. Toda T, Yamamoto M, Yanagida M (1981) J Cell Sci 52:271–287PubMedGoogle Scholar
  16. Umesono K, Hiraoka Y, Toda T, Yanagida M (1983) Curr Genet 7:123–128CrossRefGoogle Scholar
  17. Zamb T, Petes TD (1982) Cell 28:355–364CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Takashi Toda
    • 1
  • Yukinobu Nakaseko
    • 1
  • Osami Niwa
    • 1
  • Mitsuhiro Yanagida
    • 1
  1. 1.Department of Biophysics, Faculty of ScienceKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations