Advertisement

Journal of Materials Science

, Volume 28, Issue 17, pp 4804–4810 | Cite as

Oxygen self-diffusion in rutile under hydrothermal conditions

  • P. F. Dennis
  • R. Freer
Papers

Abstract

Oxygen self-diffusion coefficients have been determined for synthetic and natural rutile single crystals under hydrothermal conditions at 100 MPa total pressure and in the temperature range 873–1373 K. The diffusion coefficients are lower than the results from dry gas exchange studies would predict. Between 973 and 1373 K the results can be characterized by two linear Arrhenius relationships. D=1.14×10−11 exp(−168.8 kJ mol−1/RT) m−2s−1 for the natural rutile, and D=2.41×10−12 exp(−172.5 kJ mol−1/RT) m2s−1 for the synthetic crystal. The results have been interpreted in terms of a defect model involving the dissolution of water in rutile as substitutional hydroxyl defects on oxygen lattice sites, with a solution enthalpy in the range 81–106 kJmol−1.

Keywords

Enthalpy Rutile Total Pressure Lattice Site Defect Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Kofstad, “Non-stoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides” (Wiley, New York, 1972) pp. 139–152.Google Scholar
  2. 2.
    P. Kofstad, J. Less-Common Metals 13 (1967) 653.CrossRefGoogle Scholar
  3. 3.
    F. Kroger, “The Chemistry of Imperfect Crystals” (North Holland Publishing, Amsterdam, 1964) pp. 198–201.Google Scholar
  4. 4.
    R. Haul and G. Dumbgen, Z. Elektrochem. 66 (1962) 636.Google Scholar
  5. 5.
    R. Haul and G. Dumbgen, J. Phys. Chem. Solids 26 (1963) 1.CrossRefGoogle Scholar
  6. 6.
    R. Haul, D. Just and G. Dumbgen, in “Reactivity of Solids”. Proceedings of the 4th International Symposium on the Reactivity of Solids(Elsevier, Amsterdam, 1961) pp. 65–83.Google Scholar
  7. 7.
    D. J. Derry, D. G. Lees and J. M. Calvert, Proc. Brit. Ceram. Soc. 19 (1971) 77.Google Scholar
  8. 8.
    T. B. Gruenwald and G. Gordon, J. Inorg. Nucl. Chem. 33 (1971) 1151.CrossRefGoogle Scholar
  9. 9.
    M. Arita, M. Hosoya, M. Kobayashi, and M. Someno, J. Amer. Ceram. Soc. 62 (1979) 443.CrossRefGoogle Scholar
  10. 10.
    J. B. Bates and R. A. Perkins, Phys. Rev. B 16 (1977) 3713.CrossRefGoogle Scholar
  11. 11.
    J. V. Cathcart, R. A. Perkins, J. B. Bates and L. C. Manley, J. Appl. Phys. 50 (1979) 4110.CrossRefGoogle Scholar
  12. 12.
    R. Freer and P. F. Dennis, Mineral. Mag. 45 (1982) 197.CrossRefGoogle Scholar
  13. 13.
    P. F. Dennis and R. Freer, in “Non-Stoichiometric Compounds—Surfaces, Grain Boundaries and Structural Defects”, Vol. 276, edited by J. Nowotny and W. Weppner (NATO ASI, Series C, 1989) pp. 353–362.Google Scholar
  14. 14.
    K. Wittmaack, in Proceedings of the 8th International Conference on X-ray Optics and Microanalysis (Science, Princeton, NJ, 1979) pp. 32–38.Google Scholar
  15. 15.
    P. F. Dennis, J. Geophys. Res. (red) 89 (1984) 4047.CrossRefGoogle Scholar
  16. 16.
    J. Crank, “The Mathematics of Diffusion” (Oxford University Press, New York, 1975) p. 32.Google Scholar
  17. 17.
    J. W. Colby, in “Practical Scanning Electron Microscopy”, edited by J. I. Goldstein and H. Yakowitz (Plenum, New York, 1975) pp. 529–572.CrossRefGoogle Scholar
  18. 18.
    F. Yagi, A. Koyama, H. Sakairi and R. Hasiguti, J. Phys. Soc. Jpn 42 (1977) 939.CrossRefGoogle Scholar
  19. 19.
    N. Ait-Younes, F. Millot and P. Gerdania, Solid State Ionics 12 (1984) 437.CrossRefGoogle Scholar
  20. 20.
    E. Iguchi and K. Yajima, J. Phys. Soc. Jpn 32 (1972) 1415.CrossRefGoogle Scholar
  21. 21.
    E. Iguchi and K. Yajima, Trans. Jpn. Inst. Met. 17 (1972) 45.CrossRefGoogle Scholar
  22. 22.
    G. J. Hill, Brit. J. Appl. Phys. 1 (1968) 1151.Google Scholar
  23. 23.
    S. Stotz and C. Wagner, Berlin Bunsenges. Physik. Chem. 70 (1966) 781.Google Scholar
  24. 24.
    T. Norby and P. Kofstad, J. Amer. Ceram. Soc. 67 (1984) 786.CrossRefGoogle Scholar
  25. 25.
    D. A. Shores and R. A. Rapp, J. Electrochem. Soc. 119 (1972) 300.CrossRefGoogle Scholar
  26. 26.
    B. G. Hyde and L. A. Bursill, in “The Chemistry of Extended Defects in Non-Metallic Solids”, edited by L. Eyring and M. O'Keeffe (North-Holland Publishing, Amsterdam, 1970), pp. 347–373.Google Scholar
  27. 27.
    C. R. A. Catlow, in “Non-Stoichiometric Oxides”, edited by O. Toft Sorensen (Academic Press, New York, 1981) pp. 61–98.Google Scholar
  28. 28.
    A. N. Bagshaw and B. G. Hyde, J. Phys. Chem. Solids 37 (1976) 835.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • P. F. Dennis
    • 1
  • R. Freer
    • 2
  1. 1.Earth Science Research Group, School of Environmental SciencesUniversity of East AngliaNorwichUK
  2. 2.Materials Science CentreUniversity of Manchester/UMISTManchesterUK

Personalised recommendations