Advertisement

Journal of Materials Science

, Volume 28, Issue 17, pp 4781–4786 | Cite as

Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction

  • N. Shigemoto
  • H. Hayashi
  • K. Miyaura
Papers

Abstract

Hydrothermal treatment of fly ash with alkali gives various types of zeolites such as Na-Pl, Na-A and hydroxysodalite, where the zeolite zone was formed like an egg white, covering the central core of fly ash particles, as evinced in the previous paper. By fusion with sodium hydroxide, most of the fly ash particles were converted into sodium salts such as silicate and aluminate, from which hydrothermal reaction without stirring favourably resulted in the formation of Na-X zeolite. Crystallinity of Na-X zeolite as high as 62% was attained at the optimum condition of NaOH/fly ash = 1.2 and a fusion temperature of 823 K. Fly ash contains 14 wt% mullite (3Al2O3·2SiO2), which was revealed to be a less-active crystalline component for zeolite formation. Aluminium-enriched fly ash gave Na-A in place of Na-X zeolite. Scanning electron microscope images of cubic and octahedral crystals characteristic of Na-A and Na-X zeolite, respectively, obtained from fly ash, are given.

Keywords

Zeolite Scan Electron Microscope Image Sodium Hydroxide Hydrothermal Treatment Electron Microscope Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Yamazaki and S. Matsuura, Gypsum Lime 230 (1991) 27.Google Scholar
  2. 2.
    N. R. Fronczak and G. Burnet, US DOE Report IS-M-478 (1983) p. 1.Google Scholar
  3. 3.
    G. Ferraiolo, M. Zilli and A. Converti, J. Chem. Tech. Biotechnol. 47 (1990) 281.CrossRefGoogle Scholar
  4. 4.
    R. D. Smith, Prog. Energy Combust. Sci. 6 (1980) 53.CrossRefGoogle Scholar
  5. 5.
    G. L. Fisher, D. P. Y. Chang and M. Brummer, Science 192 (1976) 553.CrossRefGoogle Scholar
  6. 6.
    L. D. Hansen, D. Silberman and G. L. Fisher, Environ. Sci. Technol. 15 (1981) 1057.CrossRefGoogle Scholar
  7. 7.
    G. J. McCarthy, D. M. Johansen and S. T. Steinward, Adv. X-ray Anal. 31 (1988) 331.Google Scholar
  8. 8.
    S. C. White and E. D. Case, J. Mater. Sci. 25 (1990) 5215.CrossRefGoogle Scholar
  9. 9.
    H. Holler and U. Wirsching, Fortschr. Miner. 63 (1985) 21.Google Scholar
  10. 10.
    T. Henmi, Clay Sci. 6 (1987) 277.Google Scholar
  11. 11.
    F. Mondragon, F. Rincon, L. Sierra, J. Escobar, J. Ramirez and J. Fernandez, Fuel 69 (1990) 263.CrossRefGoogle Scholar
  12. 12.
    N. Shigemoto, K. Shirakami, S. Hirano and H. Hayashi, Nippon Kagaku Kaishi 1992 (1992) 484.CrossRefGoogle Scholar
  13. 13.
    W. F. Hillebrand, G. E. F. Lundell, H. A. Bright and J. I. Hoffman, “Applied Inorganic Analysis”, 2nd Edn (Wiley, New York, 1962) p. 836.Google Scholar
  14. 14.
    R. M. Barrer, “Hydrothermal Chemistry of Zeolites” (Academic Press, London, 1982) p. 232.Google Scholar
  15. 15.
    J. F. Charnell, J. Cryst. Growth 8 (1971) 291.CrossRefGoogle Scholar
  16. 16.
    V. N. Bogomolov and V. P. Petranovsky, Zeolites 6 (1986) 418.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • N. Shigemoto
    • 1
  • H. Hayashi
    • 1
  • K. Miyaura
    • 2
  1. 1.Department of Chemical Science and TechnologyUniversity of TokushimaTokushimaJapan
  2. 2.Shikoku Research Institute Inc.TakamatsuJapan

Personalised recommendations