Journal of Materials Science

, Volume 28, Issue 17, pp 4762–4766 | Cite as

On the fractal dimension of fracture surfaces of concrete elements

  • A. M. Brandt
  • G. Prokopski


The problem of the relation between the fractal dimension of a fractured surface and the fracture toughness expressed by the stress intensity factor is investigated. The theoretical conditions for such assumptions are discussed. Collected experimental results and new tests performed onconcrete specimens subjected to Mode II fracture seem to confirm that relation within the scope of materials tested and with certain necessary restrictions.


Polymer Fracture Surface Fracture Toughness Stress Intensity Fractal Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. B. Mandelbrot, “Fractals: Forms, Chance and Dimension” (Freeman, San Francisco, 1977).Google Scholar
  2. 2.
    Idem, “The Fractal Geometry of Nature” (Freeman, San Francisco, 1983).CrossRefGoogle Scholar
  3. 3.
    B. B. Mandelbrot, D. E. Passoja, and A. Paullay, Nature 308 (1984) 721.CrossRefGoogle Scholar
  4. 4.
    D. N. Winslow, Cem. Concr. Res. 15 (1985) 817.CrossRefGoogle Scholar
  5. 5.
    V. E. Saouma, C. C. Barton, and N. A. Gamaleldin, Eng. Fract. Mech. 35 (1990) 47.CrossRefGoogle Scholar
  6. 6.
    C. S. Pande, L. E. Richards, N. Louat, B. D. Dempsey and A. J. Schwoeble, Acta Metall. 35 (1987) 1633.CrossRefGoogle Scholar
  7. 7.
    A. M. Gokhale and W. J. Drury, Metall. Trans. A 21A (1990) 1201.CrossRefGoogle Scholar
  8. 8.
    A. M. Gokhale and E. E. Underwood, ibid. 21A (1990) 1193.CrossRefGoogle Scholar
  9. 9.
    E. E. Underwood and K. Banerji, in Proceedings of 6th International Congress on Stereology, Acta Stereol. 2 suppl. 1 (1983) 75.Google Scholar
  10. 10.
    K. Banerji, Metall. Trans. A. 19A (1988) 961.CrossRefGoogle Scholar
  11. 11.
    E. E. Underwood and K. Banerji, Mater. Sci. Engng. 80 (1986) 1.CrossRefGoogle Scholar
  12. 12.
    J. J. Mecholsky, D. E. Passoja and K. S. Feinbergringel, J. Amer. Ceram. Soc. 72 (1983) 60.CrossRefGoogle Scholar
  13. 13.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc., 64 (1981) 533.CrossRefGoogle Scholar
  14. 14.
    C. L. A. Neilson, MSc thesis, Georgia Institute of Technology, Atlanta, GA (1981).Google Scholar
  15. 15.
    J. K. Hellmann, “Alumina Processing and Properties Characterization Workshop”, SAND-86-1224 (Sandia National Laboratory, Albuquerque, NM, 1986).Google Scholar
  16. 16.
    J. J. Mecholsky, in “Advances in Ceramics”, Vol. 4, edited by J. H. Simmons, D. R. Uhlmann and G. H. Beall (American Ceramic Society, Columbus, OH, 1982) pp. 261–276.Google Scholar
  17. 17.
    J. J. Mecholsky and T. J. Mackin, J. Mater. Sci. Lett. 7 (1988) 1145.CrossRefGoogle Scholar
  18. 18.
    P. M. Duxbury, in “Statistical Models for the Fracture of Disordered Media,” edited by H. J. Herrmann and S. Roux (Elsevier Science (North-Holland), Amsterdam, Oxford, New York, Tokyo, 1990) p. 189.CrossRefGoogle Scholar
  19. 19.
    J. Watkins, Int. J. Fract. 23 (1983) R. 135.CrossRefGoogle Scholar
  20. 20.
    A. M. Brandt and G. Prokopski, J. Mater. Sci. 25 (1990) 3605.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • A. M. Brandt
    • 1
  • G. Prokopski
    • 2
  1. 1.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarszawaPoland
  2. 2.Technical UniversityCzestochowaPoland

Personalised recommendations