Journal of Materials Science

, Volume 28, Issue 17, pp 4744–4748 | Cite as

Optimization of critical current density of bulk YBCO superconductor prepared by coprecipitation in oxalic acid

  • Dae-Joon Kim
  • D. M. Kroeger


YBa2Cu3O7−x(YBCO) superconductor powder was prepared from mixtures of solutions containing yttrium, barium, and copper nitrates by coprecipitation in oxalic acid. Single-phase YBCO was obtained from a solution mixture of 14 vol% excess of barium nitrate and 12 vol% excess of copper nitrate relative to the stoichiometry of YBCO. The optimal pH in the coprecipitation process was determined to be 6.6–6.7 which was obtained by using 12 vol % excess oxalic acid anhydrous solution of the required oxalic acid to convert all metal cations to oxalates and adding a dilute ammonium hydroxide solution. The measurement of critical current density, Jc, of bulk YBCO prepared by the coprecipitation, showed a trend that the Jc increased together with the degree of orthorhombic distortion of YBCO phase which depended on the sample density and the content of impurity phases.


Barium Oxalate Yttrium Oxalic Acid Ammonium Hydroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Ekin, A. I. Braginski, A. J. Panson, M. A. Janocko, D. W. Capone II, N. J. Zaluzec, B. Flandermeyer, O. F. DeLima, M. Hong, J. Kwo, and S. H. Liou, J. Appl. Phys. 62 (1987) 4821.CrossRefGoogle Scholar
  2. 2.
    J. W. Ekin, Adv. Ceram. Mater. 2 (3B) (1987) 586.CrossRefGoogle Scholar
  3. 3.
    D. C. Larbalestier, M. Daeumling, X. Cai, J. Seuntjens, J. McKinnell, D. Hampshire, P. Lee, C. Meingast, T. Willies, H. Muller, R. D. Ray, R. G. Dillenburg, E. E. Hellstrom, and R. Joynt, J. Appl. Phys. 62 (1987) 3308.CrossRefGoogle Scholar
  4. 4.
    J. F. Kwak, E. L. Venturini, P. J. Nigrey and D. S. Ginley, Phys. Rev. B37 (1988) 9749.CrossRefGoogle Scholar
  5. 5.
    N. McN. Alford, W. J. Clegg, M. A. Harmer, J. D. Birchall, K. Kendall and D. H. Jones, Nature 332 (1988) 58.CrossRefGoogle Scholar
  6. 6.
    S. Nakahara, G. J. Fisanick, M. F. Yan, R. B. Van Dover and T. Boone, J. Crystal Growth 85 (1987) 639.CrossRefGoogle Scholar
  7. 7.
    D. M. Kroeger, J. Metals 41(1) (1989) 14.Google Scholar
  8. 8.
    K. No, J. D. Verhoeven, R. W. McCallum and E. D. Gibson, IEEE Trans. Magn. 25 (1989) 2184.CrossRefGoogle Scholar
  9. 9.
    G. Paterno, C. Alvani, S. Casadio, U. Gambardella and L. Maritato, ibid. 25 (1989) 2276.CrossRefGoogle Scholar
  10. 10.
    M. Kuwabara and H. Shimooka, Appl. Phys. Lett. 55 (1989) 2781.CrossRefGoogle Scholar
  11. 11.
    M. Reissner, W. Steiner, R. Stroh, S. Horhager, W. Schmid and W. Wruss, Physica C 167 (1990) 495.CrossRefGoogle Scholar
  12. 12.
    I. Bloom, B. S. Tani, M. C. Hash, D. Shi, M. A. Patel, K. C. Goretta, N. Chen and D. W. Capone II, J. Mater. Res. 4 (1989) 1093.CrossRefGoogle Scholar
  13. 13.
    T. Goto and M. Kada, ibid. 3 (1988) 1292.CrossRefGoogle Scholar
  14. 14.
    K. Sawano, A. Hayashi, T. Ando, T. Inuzuka and H. Kubo, in “Ceramic Superconductors II”, edited by M. F. Yan (American Ceramic Society, Westerville, OH, 1988) p. 282.Google Scholar
  15. 15.
    E. A. Hayri, M. Greenblatt, K. V. Ramanujachary, M. Nagano, J. Oliver, M. J. Miceli and R. Gerhardt, J. Mater. Res. 4 (1989) 1099.CrossRefGoogle Scholar
  16. 16.
    H. S. Horowitz, R. K. Bordia, C. C. Torardi, K. J. Morrissey, M. A. Subramanian, E. M. McCarron, J. B. Michel, T. R. Askew, R. B. Flippen, J. D. Bolt and U. Chowdhry, Solid State Ionics 32/33 (1989) 1087.CrossRefGoogle Scholar
  17. 17.
    D.-J. Kim and H.-E. Kim, unpublished work (1990).Google Scholar
  18. 18.
    K. Kaneko, H. Ihara, M. Hirabayashi, N. Terada and K. Senzaki, Jpn. J. Appl. Phys. 26 (1987) L734.CrossRefGoogle Scholar
  19. 19.
    H. H. Wang, K. D. Carlson, U. Geiser, R. J. Thorn, H. I. Kao, M. A. Beno, M. R. Monaghan, T. J. Allen, R. B. Proksch, D. L. Stupka, J. M. Williams, B. K. Flandermeyer and R. B. Poeppel, Inorg. Chem. 26 (1987) 1474.CrossRefGoogle Scholar
  20. 20.
    A. Manthiram and J. B. Goodenough, Nature 329 (1987) 701.CrossRefGoogle Scholar
  21. 21.
    R. J. Clark, W. J. Wallace and J. A. Leupin, in “High-Temperature Superconducting Materials”, edited by W. E. Hatfield and J. H. Miller Jr (Marcel Dekker, New York, 1988) p. 153.Google Scholar
  22. 22.
    P. K. Gallagher and D. A. Fleming, Chem. Mater. 1 (1989) 659.CrossRefGoogle Scholar
  23. 23.
    X. Z. Wang, M. Henry, J. Livage and I. Rosenman, Solid State Commun. 64 (1987) 881.CrossRefGoogle Scholar
  24. 24.
    R. Kormann, F. Lainee, J. -P. Ganne and B. Lloret, in “Proceedings of the 1st European Ceramic Society Conference”, Vol. 2, Maastricht, June 1989, edited by G. deWith, R. A. Terpstra and R. Metselaar (Elsevier Applied Science, New York, 1989) p. 441.Google Scholar
  25. 25.
    N. Imanaka, H. Imai and G. Adachi, Jpn. J. Appl. Phys. 28 (1989) L2158.CrossRefGoogle Scholar
  26. 26.
    J. R. Spann, I. K. Lloyd, M. Kahn and M. T. Chase, J. Am. Ceram. Soc. 73 (1990) 435.CrossRefGoogle Scholar
  27. 27.
    W. Wong-Ng, R. S. Roth, L. J. Swartzendruber, L. L. Bennett, C. K. Chiang, F. Beech and C. R. Hubbard, Adv. Ceram. Mater. 2 (3B) (1987) 565.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Dae-Joon Kim
    • 1
  • D. M. Kroeger
    • 2
  1. 1.Ceramics DivisionKorea Institute of Science and TechnologySeoulKorea
  2. 2.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations