Journal of Materials Science

, Volume 28, Issue 17, pp 4693–4703 | Cite as

Autostresses induced by point defects in sintering phenomena: effect on mass transport and sintering stress

  • D. Beruto
  • M. Capurro


States of anelastic strain can be associated with excess concentrations of point defects, as generated by mass transport in a sintering compact. Correspondingly, states of mechanical long-range self-equilibrated stresses (“autostresses”) can be produced. The relationships between anelastic strain and autostresses have been derived for a two-particle model. A generalized relation between chemical potentials and autostresses, including surface stresses, is provided, which allows derivation of local thermodynamic driving forces for mass transport. The concept of equivalent external sintering stress, assumed to be the driving force for the global densification process, is shown to correspond, approximately, to the material- and history dependent normal autostress component acting on the neck cross-sections. Predictions made from the model provide a new interpretation of experimental observations of the effect of gaseous phases, such as H2O and CO2, on the sintering of MgO and CaO powders.


Gaseous Phasis Experimental Observation Mass Transport Point Defect Drive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Evans, J. Amer. Ceram. Soc. 65 (1982) 497.CrossRefGoogle Scholar
  2. 2.
    M. N. Rahaman, L. C. de Jonghe and R. J. Brook, ibid. 69 (1986) 53.CrossRefGoogle Scholar
  3. 3.
    V. Sergo, Ceramica Acta. 2 (3) (1990) 37.Google Scholar
  4. 4.
    H. E. Exner and P. Bross, Acta Metall. 27 (1979) 1007.CrossRefGoogle Scholar
  5. 5.
    Idem, in “Sintering and Catalysis”, Vol. 10, edited by Kuczynski (Plenum Press, New York, 1975) p. 279.CrossRefGoogle Scholar
  6. 6.
    R. Defay and I. Prigogine, “Surface tension and adsorption” (Longmans, London, 1966) p. 307 fll.Google Scholar
  7. 7.
    A. S. Nowick and B. S. Berry, “Anelastic relaxation in crystalline solids” (Academic Press, New York, 1972) p. 176 fll.Google Scholar
  8. 8.
    C. Herring, in “The Physics of Powder Metallurgy”, edited by W. E. Kingston (McGraw-Hill, Chicago, 1951) p. 165.Google Scholar
  9. 9.
    R. Shuttleworth, Proc. Phys. Soc. 63, 5-A (1950) 444.CrossRefGoogle Scholar
  10. 10.
    C. Solliard and M. Flueli, Surface Sci. 156 (1985) 487.CrossRefGoogle Scholar
  11. 11.
    M. M. Nicolson, Proc. Roy. Soc. A 228 (1955) 490.CrossRefGoogle Scholar
  12. 12.
    P. Vergnon, M. Astier, D. Beruto, G. Brula and S. J. Teichner, Rev. Int. Hautes Temp. Refract. 9 (1972) 271.Google Scholar
  13. 13.
    L. C. de Jonghe and M. N. Rahaman, Acta Metall. 36 (1988) 223.CrossRefGoogle Scholar
  14. 14.
    R. M. Cannon and W. C. Carter. J. Amer. Ceram. Soc. 72 (1989) 1550.CrossRefGoogle Scholar
  15. 15.
    R. Raj and R. K. Bordia, Acta Metall. 32 (1984) 1003.CrossRefGoogle Scholar
  16. 16.
    A. G. Evans and C. H. Hsueh, J. Am. Ceram. Soc. 69 (1986) 444.CrossRefGoogle Scholar
  17. 17.
    A. W. Searcy, J. Chem. Phys. 81 (1984) 2489.CrossRefGoogle Scholar
  18. 18.
    M. G. Kim, U. Dahmen and A. W. Searcy, J. Amer. Ceram. Soc. 70 (1987) 146.CrossRefGoogle Scholar
  19. 19.
    A. E. Green, P. M. Naghdi and W. L. Wainwright, Arch. Rational Mech. Anal. 20 (1965) 287.CrossRefGoogle Scholar
  20. 20.
    E. Cosserat and F. Cosserat, “Théorie des corps déformables” (Dunod, Paris 1909) passim.Google Scholar
  21. 21.
    W. Flügge, “Statik und Dynamik der Schalen” (Springer, Berlin, 1957) p. 10.CrossRefGoogle Scholar
  22. 22.
    R. Baldacci, “Scienza delle costruzioni II” (UTET, Torino, 1976) p. 113.Google Scholar
  23. 23.
    J. F. Bell, in “Handbuch der Physik”, edited by D. Flügge, Vol. VIa/1, (Springer, Berlin, 1973).Google Scholar
  24. 24.
    J. J. Gilman, J. Appl. Phys. 31 (1960) 2208.CrossRefGoogle Scholar
  25. 25.
    L. Landau and E. Lifchitz, “Théorie de l'élasticité” (Mir, Moscow, 1967) p. 47.Google Scholar
  26. 26.
    F. F. Lange and B. J. Kellett, J. Amer. Ceram. Soc. 72 (1989) 725.CrossRefGoogle Scholar
  27. 27.
    C. H. Lupis, “Chemical Thermodynamics of Materials” (North Holland, Amsterdam, 1983) p. 367.Google Scholar
  28. 28.
    M. N. Rahaman and L. de Jonghe, J. Amer. Ceram. Soc. 67 (1984) C-205.CrossRefGoogle Scholar
  29. 29.
    M. Chu, L. C. de Jonghe and M. N. Rahaman, Acta Metall. 37 (1989) 1415.CrossRefGoogle Scholar
  30. 30.
    M. N. Rahaman and L. C. de Jonghe, J. Mater. Sci. 22 (1987) 4326.CrossRefGoogle Scholar
  31. 31.
    M. N. Rahaman, L. de Jonghe and M. Chu, J. Amer. Ceram. Soc. 74 (1991) 514.CrossRefGoogle Scholar
  32. 32.
    R. A. Gregg and F. N. Rhines, Metall. Trans. 4 (1973) 1365.CrossRefGoogle Scholar
  33. 33.
    W. Beere, Acta Metall. 23 (1975) 131.CrossRefGoogle Scholar
  34. 34.
    Idem, ibid. 23 (1975) 139.CrossRefGoogle Scholar
  35. 35.
    F. V. Lenel, in “IVth International Symposium on Science and Technology”, Tokyo, Japan, November 1987.Google Scholar
  36. 36.
    F. F. Lange, J. Amer. Ceram. Soc. 67 (1984) 83.CrossRefGoogle Scholar
  37. 37.
    D. Beruto, R. Botter and M. Capurro, unpublished (1992).Google Scholar
  38. 38.
    P. J. Anderson and P. L. Morgan, Trans. Farad. Soc. 60 (1964) 930.CrossRefGoogle Scholar
  39. 39.
    D. Beruto, R. Botter and A. W. Searcy, J. Amer. Ceram. Soc. 70 (1987) 155.CrossRefGoogle Scholar
  40. 40.
    D. Beruto, L. Barco and A. W. Searcy, ibid. 67 (1984) 512.CrossRefGoogle Scholar
  41. 41.
    D. Beruto, R. Botter and A. W. Searcy, J. Phys. Chem. 91 (1987) 3578.CrossRefGoogle Scholar
  42. 42.
    Idem, to be published in J. Phys. Chem. (1993).Google Scholar
  43. 43.
    A. E. H. Love, “A treatise on the mathematical theory of elasticity” (Cambridge University Press, Cambridge, 1983) p. 220 fll.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • D. Beruto
    • 1
  • M. Capurro
    • 1
    • 2
  1. 1.Inter-department Center of Materials EngineeringIstituto di ChimicaItaly
  2. 2.Istituto di Scienza delle Costruzioni, Faculty of EngineeringUniversity of GenoaItaly

Personalised recommendations