Advertisement

Journal of Materials Science

, Volume 28, Issue 17, pp 4681–4688 | Cite as

Temperature dependence of the elastic moduli, dilational and shear internal frictions and acoustic wave velocity for alumina, (Y)TZP and β′-sialon ceramics

  • M. Fukuhara
  • I. Yamauchi
Papers

Abstract

Young's, shear and bulk moduli, Poisson's ratio and Lamé parameters, longitudinal and transverse internal friction values and acoustic wave velocity anisotropy factors for three kinds of polycrystalline compounds, α-alumina, yttria-stabilized tetragonal zirconia polycrystal, (Y)TZP, and β′-sialon, (Si,Al)3(N, O)4, were simultaneously measured over a temperature range 295–1773 K, by an ultrasonic pulse sing-around method. These elastic moduli and Lamé parameters decreases and Poisson's ratio increases with increasing temperature, suggesting activation of a shear mode in the high-temperature region. The high-temperature shear internal friction for (Y)TZP and sialon were more sensitive to relief of strain and softening of glassy phase at grain boundaries, respectively, compared with the dilational friction.

Keywords

Zirconia Elastic Modulus Glassy Phase Ultrasonic Pulse Sialon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referernces

  1. 1.
    W. A. Fate, J. Appl. Phys. 46 (1975) 2375.Google Scholar
  2. 2.
    M. Shimada, K. Matsushita, S. Kuratani, T. Okamoto, M. Koizumi, K. Tsukuma and T. Tsukidate, J. Am. Ceram. Soc. 67 (1984) C-23.Google Scholar
  3. 3.
    S. Sakaguchi, F. Wakai and Y. Matsuno, Yogyo-Kyokai 95 (1987) 476.Google Scholar
  4. 4.
    T. D. Gulden, J. Am. Ceram. Soc. 52 (1969) 585.Google Scholar
  5. 5.
    J. B. Wachtman Jr, and D. G. Lam Jr, ibid. 42 (1959) 254.Google Scholar
  6. 6.
    K. Matsushita, T. Okamoto and M. Shimada, J. Phys. Colloq. C10 (1985) 545.Google Scholar
  7. 7.
    J. B. Wachitman Jr, W. E. Tefft, D. G. Lam Jr and C. S. Apstein, Phys. Rev. 122 (1961) 1754.Google Scholar
  8. 8.
    E. H. Carnevale, L. C. Lynnworth and G. S. Larson, J. Acoust. Soc. Am. 36 (1964) 1678.Google Scholar
  9. 9.
    E. Ryshkewitch, J. Am. Ceram. Soc. 34 (1951) 322.Google Scholar
  10. 10.
    C. Zener, Phys. Rev. 40 (1956) 906.Google Scholar
  11. 11.
    T. S. Kê, ibid. 71 (1949) 533.Google Scholar
  12. 12.
    K. Matsushita, T. Okamoto and M. Shimada, J. Phys. Colloq. C10 (1985) 549.Google Scholar
  13. 13.
    D. R. Mosher and R. Raj, J. Mater. Sci. 11 (1976) 49.Google Scholar
  14. 14.
    S. Sakaguchi, N. Murayama and F. Wakai, Yogyo-Kyokai 95 (1987) 1219.Google Scholar
  15. 15.
    J. B. Wachtman Jr and W. E. Tefft, Rev. Sci. Instrum. 29 (1958) 517.Google Scholar
  16. 16.
    J. F. W. Bell, Philos. Mag. 2 (1957) 113.Google Scholar
  17. 17.
    M. Fukuhara, “Super High Strength Ceramics”, in “Super Fine Ceramics”, 19th Ceramic Lecture Meeting, September 1985, edited by K. Koumoto (Japanese Ceramic Society, Tokyo) p. 27.Google Scholar
  18. 18.
    M. Fukuhara, J. Am. Ceram. Soc. 72 (1989) 236.Google Scholar
  19. 19.
    D. E. Macdonald, Eng. Fatigue Mech. 8 (1976) 17.Google Scholar
  20. 20.
    N. P. Cedrone, D. R. Curran, J. Acoust. Soc. Am. 26 (1954) 963.Google Scholar
  21. 21.
    R. L. Forgacs, ibid. 32 (1960) 1697.Google Scholar
  22. 22.
    A. Sather, ibid. 43 (1968) 1291.Google Scholar
  23. 23.
    H. J. Mcskimin and E. S. Fisher, J. Appl. Phys. 31 (1960) 1627.Google Scholar
  24. 24.
    M. Redwood, “Mechanical Waveguides” (Pergamon Press, Oxford, 1960) p. 205.Google Scholar
  25. 25.
    H. Iwasaki, J. Mater. Res. Soc. Jpn. 30 (1981) 1044.Google Scholar
  26. 26.
    H. Iwasaki, Ceramics (Jpn) 12 (1977) 342.Google Scholar
  27. 27.
    K. Tsukuma, private communication Apr. 1992.Google Scholar
  28. 28.
    C. F. Smith and W. B. Crandall, J. Am. Ceram. Soc. 47 (1964) 624.Google Scholar
  29. 29.
    H. F. Pollard, “Sound Waves in Solids” (Pion, London, 1977) p. 14.Google Scholar
  30. 30.
    D. S. Hughes and J. L. Kelly, Phys. Rev. 92 (1953) 1145.Google Scholar
  31. 31.
    A. Seeger and O. Buck, Z. Naturforsch. 15a (1960) 1056.Google Scholar
  32. 32.
    R. L. Coble and W. D. Kingery, J. Am. Ceram. Soc. 39 (1956) 377.Google Scholar
  33. 33.
    Y. Katsumura and M. Fukuhara, in “Proceedings of the World Congress on High Tech Ceramics”, 6th International Meeting on Modern Ceramics Technologies, Milan, Italy, June 1986, edited by P. Vincenzini (Elsevier, Amsterdam, 1987) p. 2735.Google Scholar
  34. 34.
    E. S. Fisher and C. J. Renken, J. Acoust. Soc. Am. 35 (1963) 1055.Google Scholar
  35. 35.
    R. B. Lindsay, “Mechanical Radiation” (McGraw-Hill, New York, 1960) p. 74.Google Scholar
  36. 36.
    E. P. Papadakis, J. Appl. Phys. 42 (1971) 2990.Google Scholar
  37. 37.
    E. P. Papadakis, L.C. Lynnworth, K.A. Fowler and E. H. Carnevale, J. Acoust. Soc. Am. 52 (1972) 850.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • M. Fukuhara
    • 1
  • I. Yamauchi
    • 2
  1. 1.Technical Research LaboratoryToshiba TungaloyKawasakiJapan
  2. 2.Technical Engineering DepartmentCho-onpa KogyoTokyoJapan

Personalised recommendations