Journal of Materials Science

, Volume 28, Issue 17, pp 4673–4680 | Cite as

Optical resistance of sapphire

  • A. Chmel
  • S. B. Eronko
  • A. M. Kondyrev
  • V. Ya. Nazarova


Single-crystals of α-Al2O3 were subjected to multi-stage polishing with diamond powder of successively decreasing grain size. After each stage of polishing, the infrared reflection spectra were recorded and the nanosecond laser resistance at 1.06 μm was measured. The laser induced damage data were also obtained for natural face, annealed and ion-etched surfaces. It was shown that (i) disorder of the crystal structure affects the optical resistance, resulting in a decrease of damage threshold, and (ii) the surface layer disturbed by grinding retains a “memory” of the initial structure. The multi-pulse sub-threshold laser irradiation which leads, finally, to macroscopic damage of a sample, stimulates the process of structural ordering, together with the formation of “dangerous” local defects.


Grain Size Reflection Surface Layer Laser Irradiation Sapphire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Barker, Phys. Rev. 132 (1963) 1474.CrossRefGoogle Scholar
  2. 2.
    M. I. Musatov, Optiko-mekh. prom. (Sov. J. Glass Technol.) 8 (1975) 36.Google Scholar
  3. 3.
    W. E. Lee, K. P. D. Lagerof, T. E. Mitchell and A. H. Heuer, Philos. Mag. A 51 (1985) L23.CrossRefGoogle Scholar
  4. 4.
    C. R. Giuliano, Appl. Phys. Lett. 21 (1972) 39.CrossRefGoogle Scholar
  5. 5.
    A. S. Bebchuck, D. A. Gromov and V. S. Nechitailo, Kvantov. Elektron. (Sov. J. Quant. Electron.) 3 (1976) 1814.Google Scholar
  6. 6.
    D. Milam, Appl. Optics 16 (1977) 1204.CrossRefGoogle Scholar
  7. 7.
    A. A. Kravchenko, Yu. I. Lokhov and D. I. Cherednichenko, Fiz. Khim. Stekla (Sov. J. Glass Phys. Chem.) 16 (1990) 923.Google Scholar
  8. 8.
    V. M. Altshuler, E. N. Babadjyan and V. V. Kosachev, Fiz. Khim. Obrabotki Mater. 6 (1983) 174.Google Scholar
  9. 9.
    M. E. Dovgan, V. I. Zaitseva, M. I. Shachnovich, ibid. 4 (1976) 146.Google Scholar
  10. 10.
    I. P. Babijchuk, E. R. Dobrovinskaya, L. A. Litvinov and A. P. Radchenko, Optiko-Mech. Prom. (Sov. J. Glass Technol.) 3 (1988) 57.Google Scholar
  11. 11.
    A. Chmel, S. B. Eronko, S. A. Knyazev, N. M. Leksovskaya and M. I. Musatov, Poverkhnost 1 (1992) 137.Google Scholar
  12. 12.
    D. Kitriotis and L. D. Merkle, Appl. Optics 28 (1989) 949.CrossRefGoogle Scholar
  13. 13.
    S.-T. Wu and M. Bass, Appl. Phys. Lett. 39 (1981) 948.CrossRefGoogle Scholar
  14. 14.
    A. A. Glebovski, I. F. Moiseenko and A. A. Lisichenko, Izv. Akad. Nauk SSSR (Bull. Acad. Sci. USSR, Phys. Ser.) 53 (1989) 568.Google Scholar
  15. 15.
    S. N. Zhurkov, V. A. Petrov, A. M. Kondyrev and A. E. Chmel, Philos. Mag. B 57 (1988) 307.CrossRefGoogle Scholar
  16. 16.
    A. Kusov, A. Kondyrev and A. Chmel, J. Phys. Condens. Matter 2 (1990) 4067.CrossRefGoogle Scholar
  17. 17.
    C. L. Tang, J. Appl. Phys. 37 (1966) 2945.CrossRefGoogle Scholar
  18. 18.
    N. Bloembergen, Appl. Optics 12 (1973) 661.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • A. Chmel
    • 1
  • S. B. Eronko
    • 1
  • A. M. Kondyrev
    • 1
  • V. Ya. Nazarova
    • 1
  1. 1.A. F. Ioffe Physico-Technical InstituteAcademy of Sciences of RussiaSt PetersburgRussia

Personalised recommendations