Advertisement

Journal of Materials Science

, Volume 28, Issue 17, pp 4667–4672 | Cite as

Microbuckling instability in elastomeric cellular solids

  • R. Lakes
  • P. Rosakis
  • A. Ruina
Papers

Abstract

Compressive properties of elastic cellular solids are studied via experiments upon foam and upon single-cell models. Open-cell foam exhibits a monotonic stress-strain relation with a plateau region; deformation is localized in transverse bands. Single-cell models exhibit a force-deformation relation which is not monotonic. In view of recent concepts of the continuum theory of elasticity, the banding instability of the foam in compression is considered to be a consequence of the non-monotonic relation between force and deformation of the single cell.

Keywords

Polymer Foam Single Cell Continuum Theory Plateau Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. Gibson and M. F. Ashby, Cellular solids (Pergamon, Oxford, 1988).Google Scholar
  2. 2.
    J. B. Choi and R. S. Lakes, J. Mater. Sci. 28 (1993) in press.Google Scholar
  3. 3.
    W. J. Stronge and V. P. W. Shim, J. Engng Mater. Technol. 110 (1988) 185–190.CrossRefGoogle Scholar
  4. 4.
    R. S. Lakes, Science 235 (1987) 1038–1040.CrossRefGoogle Scholar
  5. 5.
    E. A. Friis, R. S. Lakes and J. B. Park, J. Mater. Sci. 23 (1988) 4406–4414.CrossRefGoogle Scholar
  6. 6.
    J. H. Bramble and L. E. Payne, Proceedings of the Fourth National Congress of Applied Mechanics (1963) 469–473.Google Scholar
  7. 7.
    J. K. Knowles and E. Sternberg, J. Elasticity 8 (1978) 329–379.CrossRefGoogle Scholar
  8. 8.
    S. P. Timoshenko and J. N. Goodier, “Theory of elasticity”, 3rd Edn (McGraw-Hill, New York, 1970).Google Scholar
  9. 9.
    J. L. Ericksen, J. Elasticity 5 (1975) 191–201.CrossRefGoogle Scholar
  10. 10.
    H. C. Simpson and S. J. Spector, Arch. Rational Mech. Anal. 84 (1983) 55–68.CrossRefGoogle Scholar
  11. 11.
    R. D. James, ibid. 72 (1979) 100–140.CrossRefGoogle Scholar
  12. 12.
    R. Abeyaratne and J. K. Knowles, Int. J. Solids, Structures, 24 (1988) 1021–1044.CrossRefGoogle Scholar
  13. 13.
    M. E. Gurtin, in “Phase transformations and material instabilities in solids”, edited by M. E. Gurtin (Academic Press, NY, 1984).Google Scholar
  14. 14.
    R. S. Lakes, ASME J. Engng. Mater. Tech. 113 (1990) 1313.Google Scholar
  15. 15.
    H. B. Mühlhaus and E. C. Aifantis, Int. J. Solids Structures in press.Google Scholar
  16. 16.
    R. Abeyaratne and N. Triantafyllidis, J. Applied Mech. 51 (1984) 481–486.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • R. Lakes
    • 1
  • P. Rosakis
    • 2
  • A. Ruina
    • 2
  1. 1.Department of Biomedical Engineering, Department of Mechanical Engineering, Center for Laser Science and EngineeringUniversity of IowaIowa CityUSA
  2. 2.Department of Theoretical and Applied MechanicsCornell UniversityIthacaUSA

Personalised recommendations