Journal of Materials Science

, Volume 28, Issue 17, pp 4623–4629 | Cite as

Comparison of strengthening in wire-drawn or rolled Cu-20% Nb with a dislocation accumulation model

  • W. A. Spitzig
  • S. B. Biner


Strengthening after large deformations by wire-drawing or rolling of Cu, Nb and Cu-20% Nb was compared with the predictions of a proposed modified substructural strengthening model for ductile two-phase alloys. The comparisons indicate that the more extensive and refined model of Funkenbusch and Courtney offers no improvement over the original model of Ashby in predicting the strengthening with increased deformation processing or the dislocation densities necessary to produce the observed strengthening in Cu-20% Nb. Both models can predict the strengthening behaviour of Cu-20% Nb. However, neither model is in accord with the observations that the dislocation density in the Cu matrix is essentially independent of the degree of deformation processing, and that the magnitudes of the dislocation density are much the same in the Cu in Cu-20% Nb and pure Cu identically deformation-processed. In addition, there is no experimental support for the Funkenbusch and Courtney model prediction of an order of magnitude greater dislocation density in the Nb filaments than in the Cu matrix in Cu-20% Nb. It appears that a mechanism that does not require an accumulation of dislocations for strengthening, such as the difficulty in propagating dislocations between closely spaced barriers, is more likely to be responsible for strengthening in Cu-Nb-type deformation-processed composites.


Polymer Model Prediction Dislocation Density Large Deformation Original Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. Spitzig, J. D. Verhoeven, C. L. Trybus and L. S. Chumbley, Scripta Metall. 24 1171.Google Scholar
  2. 2.
    Idem, ibid. 24 (1990) 1181.CrossRefGoogle Scholar
  3. 3.
    P. D. Funkenbusch and T. H. Courtney, ibid. 24 (1990) 1175.CrossRefGoogle Scholar
  4. 4.
    Idem, ibid. 24 (1990) 1183.CrossRefGoogle Scholar
  5. 5.
    Idem 33 (1985) 913.CrossRefGoogle Scholar
  6. 6.
    Idem, Metall. Trans. 18 (1987) 1249.CrossRefGoogle Scholar
  7. 7.
    Idem, Scripta Metall. 23 (1989) 1719.CrossRefGoogle Scholar
  8. 8.
    W. A. Spitzig, Acta Metall. 39 (1991) 1085.CrossRefGoogle Scholar
  9. 9.
    J. C. M. Li and Y. T. Chou, Metall. Trans. 1 (1970) 1145.CrossRefGoogle Scholar
  10. 10.
    J. C. M. Li, Trans. AIME 227 (1963) 239.Google Scholar
  11. 11.
    M. F. Ashby, in “Strengthening Methods in Crystals”, edited by A. Kelly and R. B. Nicholson (Wiley, New York, 1971) p. 137.Google Scholar
  12. 12.
    J. D. Verhoeven, F. A. Schmidt, E. D. Gibson and W. A. Spitzig, J. Metals 39 (9) (1986) 20.Google Scholar
  13. 13.
    W. A. Spitzig, A. R. Pelton and F. C. Laabs, Acta Metall. 35 (1987) 2427.CrossRefGoogle Scholar
  14. 14.
    C. L. Trybus and W. A. Spitzig, ibid. 37 (1989) 1971.CrossRefGoogle Scholar
  15. 15.
    W. A. Spitzig and P. D. Krotz, Scripta Metall. 21 (1987) 1143.CrossRefGoogle Scholar
  16. 16.
    W. A. Spitzig, Ames Laboratory, Iowa State University, unpublished research, (1991).Google Scholar
  17. 17.
    W. A. Spitzig, C. L. Trybus and F. C. Laabs, Mater. Sci. Engng. A145 (1991) 179.CrossRefGoogle Scholar
  18. 18.
    I. Le May, “Principles of Mechanical Metallurgy” (Elsevier, New York, 1981) pp. 124 and 187.Google Scholar
  19. 19.
    J. Gil Sevillano, P. van Houtte and E. Aernoudt, Prog. Mater. Sci. 25 (1981) 69.CrossRefGoogle Scholar
  20. 20.
    W. F. Hosford Jr, Trans. AIME 230 (1964) 12.Google Scholar
  21. 21.
    J. D. Livingston, Acta Metall. 1 (1962) 229.CrossRefGoogle Scholar
  22. 22.
    J. E. Bailey, Philos. Mag. 8 (1963) 223.CrossRefGoogle Scholar
  23. 23.
    M. R. Staker and D. L. Holt, Acta Metall. 20 (1972) 569.CrossRefGoogle Scholar
  24. 24.
    L. I. Van Torne and G. Thomas, ibid. 1 (1963) 881.CrossRefGoogle Scholar
  25. 25.
    L. S. Chumbley, H. L. Downing, W. A. Spitzig and J. D. Verhoeven, Mater. Sci. Engng A117 (1989) 59.CrossRefGoogle Scholar
  26. 26.
    A. R. Pelton, F. C. Laabs, W. A. Spitzig and C. C. Cheng, Ultramicrosc. 22 (1987) 251.CrossRefGoogle Scholar
  27. 27.
    C. L. Trybus, L. S. Chumbley, W. A. Spitzig and J. D. Verhoeven, ibid. 30 (1989) 315.CrossRefGoogle Scholar
  28. 28.
    J. Gil Sevillano, in “Strength of Metals and Alloys”, Proceedings of ICSMA 5, edited by P. Haasen, V. Gerold and G. Kostorz (Pergamon, Oxford, 1980) p. 819.Google Scholar
  29. 29.
    J. D. Verhoeven, L. S. Chumbley, F. C. Laabs and W. A. Spitzig, Acta Metall. 39 (1991) 2825.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • W. A. Spitzig
    • 1
  • S. B. Biner
    • 1
  1. 1.Ames Laboratory USDOEIowa State UniversityAmesUSA

Personalised recommendations