Advertisement

Journal of Materials Science

, Volume 28, Issue 17, pp 4615–4622 | Cite as

The influence of alloy composition on microstructure and tensile behaviour of copper-lead alloys

  • S. Anand
  • T. S. Srivatsan
  • T. S. Sudarshan
Papers

Abstract

Lead is a soft metal that possesses excellent antifriction and lubricating characteristics and is a desired addition to alloys which find use in friction-critical and low-load-bearing applications. The influence of alloy composition on microstructure, tensile properties and quasi-static fracture behaviour has been studied. Alloy composition, that is, lead content, was observed to have an influence on the size and distribution of lead globules in the copper matrix. The yield strength, ultimate tensile strength and elastic modulus of the alloy decreased with increase in lead content. The ductility of the alloys showed an improvement with increase in lead content. The influence of lead content on quasi-static fracture is discussed in detail.

Keywords

Copper Microstructure Tensile Strength Elastic Modulus Ductility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Livingston and C. E. Henry, Trans. Metall. Soc. AIME 245 (1969) 351.Google Scholar
  2. 2.
    T. S. Sudarshan, Final Report, Contract F33615-88-C5493, Department of Air Force, Air Force Systems Command, Wright Patterson Air Force Base, OH (1989).Google Scholar
  3. 3.
    M. Hansen and K. Anderko, Constitution of Binary Alloys, second edn (McGraw Hill, New York, 1958) p. 347.Google Scholar
  4. 4.
    J. D. Livingston and H. E. Cline, Trans. Metall. Soc. AIME 245 (1969) 351.Google Scholar
  5. 5.
    S. Shah, R. N. Grugel and B. D. Lichter, Metall. Trans. 19A(1988) 2677.CrossRefGoogle Scholar
  6. 6.
    J. B. Andrews, A. C. Sandia and P. A. Curreri, ibid. 19A (1988) 2645.CrossRefGoogle Scholar
  7. 7.
    R. N. Grugel and A. Hellawell, ibid. 12A (1981) 669.CrossRefGoogle Scholar
  8. 8.
    T. S. Srivatsan, S. Anand and T. S. Sudarshan, Mater. Lett. (1992) 13 (1992) 109–114.CrossRefGoogle Scholar
  9. 9.
    S. Anand, MSc thesis, University of Akron, May 1992.Google Scholar
  10. 10.
    S Anand, T. S. Srivatsan and T. S. Sudarshan, Int. J. Fatigue 15 (1993), in press.Google Scholar
  11. 11.
    A. de la Torre, P. Adeva and M. Aballe, J. Mater. Sci. 26 (1991)4351.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • S. Anand
    • 1
  • T. S. Srivatsan
    • 1
  • T. S. Sudarshan
    • 2
  1. 1.Department of Mechanical EngineeringThe University of AkronAkronUSA
  2. 2.2929-P1, Eskridge CenterMaterials Modification Inc.FairfaxUSA

Personalised recommendations