Advertisement

Journal of Materials Science

, Volume 28, Issue 17, pp 4595–4606 | Cite as

Debonding microprocesses and interfacial strength in particle-filled polymer materials

  • A. V. Zhuk
  • N. N. Knunyants
  • V. G. Oshmyan
  • V. A. Topolkaraev
  • A. A. Berlin
Papers

Abstract

Griffith energy theory was developed for analysis of crack propagation along an interface in polymers filled with rigid spherical inclusions. A polydisperse structural model was used for stress-strain distribution analysis of composite materials. Experiments were performed on glass-bead filled polyethylene and polypropylene and epoxy resin. The dependence of debonding stresses and angles on contraction stress, friction, particle diameter and material characteristics were analysed.

Keywords

Polymer Polyethylene Epoxy Composite Material Polypropylene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Manson and L. H. Sperling, in “Polymer blends and composites”, Russian edition, edited by Yu. K. Godovsky (Khimiya, Moscow, 1979) p. 309.Google Scholar
  2. 2.
    M. E. I. Dekkers and D. J. Heikens, J. Mater. Sci. 20 (1985) 3865.CrossRefGoogle Scholar
  3. 3.
    J. Spanoudakis and R. J. Young, ibid. 19 (1984) 473.CrossRefGoogle Scholar
  4. 4.
    V. G. Oshmyan, N. N. Knunyants, Yu. M. Tovmasyan, V. A. Topolkaraev and L. I. Manevich, Mehanika Kompozit. Materialov 3 (1984) 431.Google Scholar
  5. 5.
    A. V. Zhuk, A. Y. Gorenberg, V. A. Topolkaraev and V. G. Oshmyan, ibid. 5 (1987) 776.Google Scholar
  6. 6.
    B. H. Kapihaloo and K. Viswanathan, J. Mater. Sci. 20 (1985) 4103.CrossRefGoogle Scholar
  7. 7.
    J. Spanoudakis and R. J. Young, ibid. 19 (1984) 487.CrossRefGoogle Scholar
  8. 8.
    V. A. Topolkaraev, N. V. Gorbunova, I. L. Dubnikova, T. V. Paramzina and F. S. Dyachkovsky, Vysokomolek. Soed. 32A (1990) 2210.Google Scholar
  9. 9.
    V. G. Oshmyan, in “Proceedings of the 3rd Japan-USSR Joint Symposium on Advanced Composite Materials”, Moscow, October 1991, edited by Yu. M. Tovmasyan (Institute of Chemical Physics, Moscow, 1991) p. 181.Google Scholar
  10. 10.
    A. A. Griffith, Trans. Roy. Soc. Lond. A221 (1920) 163.CrossRefGoogle Scholar
  11. 11.
    Z. Hashin, AIAA J. 4 (1966) 1411.CrossRefGoogle Scholar
  12. 12.
    A. N. Gent, J. Mater. Sci. 19 (1984) 1947.CrossRefGoogle Scholar
  13. 13.
    V. I. Mossakovsky and M. T. Rybka, Prikladnaya Matematika i Mehanika 28 (1964) 1061.Google Scholar
  14. 14.
    R. W. Davidge and T. J. Green, J. Mater. Sci. 3 (1968) 629.CrossRefGoogle Scholar
  15. 15.
    V. G. Oshmyan, Doctoral Thesis, Institute of Chemical Physics Academy of Sciences USSR (1987).Google Scholar
  16. 16.
    N. N. Knunyants, M. A. Lyapunov, L. I. Manevich, V. G. Oshmyan and A. Y. Shaulov, Mehanika Kompozit. Materialov 2 (1986) 231.Google Scholar
  17. 17.
    Y. Sato and J. Furukawa, Rubber Chem. Technol. 35 (1962) 857.CrossRefGoogle Scholar
  18. 18.
    Idem, ibid. 36 (1963) 1081.CrossRefGoogle Scholar
  19. 19.
    L. M. Chepel, M. I. Knunyants, V. A. Topolkaraev, A. N. Zelenetsky, O. B. Solomatina and E. V. Prut, Vysokomolek. Soed. 26A (1984) 362.Google Scholar
  20. 20.
    V. P. Yashyn, I. S. Vainilovich, A. V. Zhuk, S. S. Sheiko and S. N. Magonov, Pribory i Tehnika Eksperimenta 4 (1989) 246.Google Scholar
  21. 21.
    A. J. Kinloch, J. Mater. Sci. 15 (1980) 2141.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • A. V. Zhuk
    • 1
  • N. N. Knunyants
    • 1
  • V. G. Oshmyan
    • 1
  • V. A. Topolkaraev
    • 1
  • A. A. Berlin
    • 1
  1. 1.Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations