Advertisement

Journal of Materials Science

, Volume 29, Issue 16, pp 4399–4403 | Cite as

The role of ε-martensite in the impact toughness of an Fe-17Mn alloy

  • D. Q. Wang
  • H. F. Lopez
Papers

Abstract

The influence of ε-martensite on the cryogenic toughness of an Fe-17 wt% Mn alloy was studied in this work. Alloys were tempered at various temperatures in order to systematically increase the volume fraction of ε-martensite. This was followed by Charpy impact testing conducted at room temperature and at−196°C. The experimental results indicated that although room-temperature toughness was not influenced by the ε-martensite content, the cryogenic toughness was strongly dependent on the volume fraction of ε-martensite. In particular, with the exception of the alloys tempered at 400 and 450°C, the impact toughness consistently increased with ε-martensite content. Microstructural and fractographic evaluations using SEM and TEM suggested that the toughness improvements were attributed to the ε→ α stress-induced martensite transformation. No microstructural evidence was found which could be ascribed to an effect of ε-martensite on the low-temperature embrittlement exhibited by Fe-Mn alloys tempered at 400–450°C.

Keywords

Polymer Martensite Martensite Transformation Impact Testing Impact Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Lee and J. W. Morris, Metall. Trans. 14A (1983) 913.CrossRefGoogle Scholar
  2. 2.
    T. Horiuchi, R. Ogawa and M. Shimada, Adv. Cryog. Eng. Mater. 32 (1986) 33.CrossRefGoogle Scholar
  3. 3.
    J. Namekata and Y. Kondo, J. Jpn. Soc. Strength Fract. Mater. 22 (1987) 1.Google Scholar
  4. 4.
    Y. N. Petrov, T. F. Volynova, I. A. Yakubstov, I. B. Medov and V. M. Mnasin, Phys. Met. Metall. 68 (1989) 169.Google Scholar
  5. 5.
    K. M. Chang and J. W. Morris Jr, Metall. Trans. 10A (1979) 1377.CrossRefGoogle Scholar
  6. 6.
    M. Niikura and J. W. Morris Jr, ibid. 11A (1980) 1531.CrossRefGoogle Scholar
  7. 7.
    N. Nasim and E. Wilson, ibid. 11A (1980) 1625.CrossRefGoogle Scholar
  8. 8.
    Y. G. Kim and C. Y. Lim, ibid. 19A (1988) 1625.CrossRefGoogle Scholar
  9. 9.
    A. Sato, K. Soma and T. Mori, Acta Metall. 30 (1982) 1901.CrossRefGoogle Scholar
  10. 10.
    K. H. Hwang, C. M. Wan and J. G. Byrne, Scripta Metall. Mater. 24 (1990) 979.CrossRefGoogle Scholar
  11. 11.
    U. R. Lenel and B. R. Knott, Metall. Trans. 18A (1987) 847.CrossRefGoogle Scholar
  12. 12.
    M. A. Filippov, V. Y. Lugovykh, S. Studenok and M. Y. Poptsov, Phys. Met. Metall. 66 (1988) 156.Google Scholar
  13. 13.
    P. Li, S. L. Chu, C. P. Chou and F. C. Chen, Scripta Metall. Mater. 25 (1991) 1869.CrossRefGoogle Scholar
  14. 14.
    D. Duchateau and M. Guttmann, Acta Metall. 29 (1981) 1291.CrossRefGoogle Scholar
  15. 15.
    H. Yoshimura, T. Shimizu, H. Yada and K. Kitajima, Trans. ISIJ 20 (1980) 187.Google Scholar
  16. 16.
    L. Longsheng, Metallography 15 (1982) 355.CrossRefGoogle Scholar
  17. 17.
    B. K. Zuidema, D. K. Subramanyam and W. C. Leslie, Metall. Trans. 18A (1987) 1629.CrossRefGoogle Scholar
  18. 18.
    A. H. Graham and J. L. Youngblood, ibid. 1 (1970) 423.CrossRefGoogle Scholar
  19. 19.
    L. E. Murr and F. Z. Grace, Trans. TMS-AIME 245 (1969) 2225.Google Scholar
  20. 20.
    G. B. Olson and M. Cohen, Metall. Trans. 13A (1982) 1907.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • D. Q. Wang
    • 1
  • H. F. Lopez
    • 1
  1. 1.Materials Department, College of Engineering and Applied ScienceUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations