Journal of Materials Science

, Volume 29, Issue 16, pp 4393–4398 | Cite as

A method for the calculation of interfacial energies in Al2O3 and ZrO2/liquid-metal and liquid-alloy systems

  • P. Nikolopoulos
  • S. Agathopoulos
  • A. Tsoga


A method is proposed by which the interfacial energy, γSL, of polycrystalline solid oxides (Al2O3, ZrO2) in contact with liquid metals and certain binary liquid alloys can be calculated from the values of the surface energy of the oxides, γSV, and the liquid metals or liquid alloys, γLV, respectively. According to this method, the interfacial energy depends on the geometric mean of surface interactions, (γSV γLV)1/2, the molar volumes, V, of the solid and liquid phases, and a parameter, K, which depends on the geometric details of the oxide surface defined by the ion sites in the oxide as well as the stoichiometry of the elements in the oxide and is given by the equation,
$$\gamma _{SL} = \left( {K\frac{{V_{metal} }}{{V_{oxide} }} + 1} \right)^{2/3} (\gamma _{SV} \gamma _{LV} )^{1/2}$$
The method was verified using interfacial energy data obtained by measurements of the contact angle, θ, formed between the oxides and the liquid metals and liquid alloys with the sessile drop technique. A good agreement was observed between the calculated and the experimentally estimated values of γSL at the melting point of the metals and alloys.


Oxide Al2O3 Melting Point Contact Angle Molar Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    JU. V. Naidich, in “Progress in Surface and Membrane Science”, Vol. 14, edited by D. A. Cadenhead and J. F. Danielli (Academic Press, New York, 1981) p. 353.Google Scholar
  2. 2.
    R. J. Good, L. A. Girifalco and G. Kraus, J. Phys. Chem. 62 (1958) 1418.CrossRefGoogle Scholar
  3. 3.
    R. J. Good and L. A. Girifalco, ibid. 64 (1960) 561.CrossRefGoogle Scholar
  4. 4.
    D. Chatain, I. Rivollet and N. Eustatho-Poulos, J. Chim. Phys. 84 (1987) 201.CrossRefGoogle Scholar
  5. 5.
    D. Sotiropoulou and P. Nikolopoulos, J. Mater. Sci. 28 (1993) 356.CrossRefGoogle Scholar
  6. 6.
    P. Nikolopoulos, ibid. 20 (1985) 3993.CrossRefGoogle Scholar
  7. 7.
    D. Sotiropoulou and P. Nikolopoulos, ibid. 26 (1991) 1395.CrossRefGoogle Scholar
  8. 8.
    G. Lang, Z. Metallkde 67 (1976) 549.Google Scholar
  9. 9.
    B. C. Allen, in “Liquid Metals”, edited by S. Z. Beer (Dekker, New York, 1972) p. 161.Google Scholar
  10. 10.
    G. Lang, P. Laty, J. Ch. Joud and P. Desre, Z. Metallkde 68 (1977) 113.Google Scholar
  11. 11.
    A. R. Miedema and R. Boom, ibid. 69 (1978) 183.Google Scholar
  12. 12.
    J. W. Belton and M.G. Evans, Trans. Faraday Soc. 41 (1945) 1.CrossRefGoogle Scholar
  13. 13.
    T. P. Hoar and D. A. Melfort, ibid. 53 (1957) 315.CrossRefGoogle Scholar
  14. 14.
    A. H. K. Abdel-Aziz and M. B. Kirshah, Z. Metallkde 68 (1977) 437.Google Scholar
  15. 15.
    S. D. Veazey and W. C. Roe, J. Mater. Sci. 7 (1972) 445.CrossRefGoogle Scholar
  16. 16.
    A. F. Crawley, Int. Metall. Rev. 19 (1974) 32.CrossRefGoogle Scholar
  17. 17.
    P. Nikolopoulos and B. Schulz, J. Nucl. Mater. 82 (1979) 172.CrossRefGoogle Scholar
  18. 18.
    F. Bashfort and S. C. Adams, in “An Attempt to Test the Theories of Capillary Action” (University Press, Cambridge, 1883) p. 63.Google Scholar
  19. 19.
    G. Angelopoulos, U. Jauch and P. Nikolopoulos, Mat. Wiss. Werkstofftech. 19 (1988) 168.CrossRefGoogle Scholar
  20. 20.
    P. Nikolopoulos and D. Sotiropoulou, J. Mater. Sci. Lett. 6 (1987) 1429.CrossRefGoogle Scholar
  21. 21.
    P. Nikolopoulos, G. Ondacek and D. Sotiropoulou, Ceram. Int. 15 (1989) 201.CrossRefGoogle Scholar
  22. 22.
    K.P. Truble and M. Ruehle, Z. Metallkde 81 (1990) 749.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Nikolopoulos
    • 1
  • S. Agathopoulos
    • 2
  • A. Tsoga
    • 2
  1. 1.Chemical Engineering Department, Materials Science and Technology SectionUniversity of PatrasPatrasGreece
  2. 2.Institute of Chemical Engineering and High Temperature Chemical ProcessesPatrasGreece

Personalised recommendations