Advertisement

Journal of Materials Science

, Volume 29, Issue 16, pp 4385–4392 | Cite as

Creep of porcelain-containing silica and alumina

  • R. Ponraj
  • S. Ramakrishna Iyer
  • V. M. Radhakrishnan
Papers

Abstract

Hard porcelain ceramics find many applications because of their high hardness, high mechanical strength and moderate thermal-shock resistance. The addition of alumina as a filler to porcelain increases its strength at room temperature. In the present investigation, four-point-bend creep tests were carried out for porcelain-containing silica (SP-1) and alumina (AP-3) at 800, 900 and 1000°C. The creep data were analysed using a power-law creep, and the stress exponents were estimated. The activation energy for these two materials was found to be 45 kcal mol−1. The viscosity of the feldspar glassy phase was also determined from the creep tests. The test samples were analysed by scanning electron microscopy (SEM). The X-ray diffraction results (XRD) show that the amount of crystalline phase in the material increases after creep testing.

Keywords

Alumina Viscosity Scanning Electron Microscopy Activation Energy Mechanical Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. R. Cannon and T. G. Langdon, J. Mater. Sci. 18 (1983) 1.CrossRefGoogle Scholar
  2. 2.
    S. K. Khandelwal and R. L. Cook, Amer. Ceram. Soc. Bull. 49 (1970) 522.Google Scholar
  3. 3.
    G. K. Dunsmore, J. E. Fenstermacher and F. A. Hummel, ibid. 40 (1961) 310.Google Scholar
  4. 4.
    H. Salmang, “Ceramics: physical and chemical fundamentals” (Butterworths, London, 1961) p. 329.Google Scholar
  5. 5.
    S. P. Chaudhuri, Trans. Indian Ceram. Soc. 32 (1973) 70.CrossRefGoogle Scholar
  6. 6.
    C. W. Parmalee and A. E. Badger, J. Amer. Ceram. Soc. 13 (1930) 376.CrossRefGoogle Scholar
  7. 7.
    D. S. Wilkinson, ibid. 71 (1988) 562.CrossRefGoogle Scholar
  8. 8.
    C. E. McNeilly and G. L. De Poorter, Amer. Ceram. Soc. Bull. 42 (1963) 1.Google Scholar
  9. 9.
    R. Ponraj and S. Ramakrishna Iyer, J. Mater. Sci. Lett. 11 (1992) 1000.CrossRefGoogle Scholar
  10. 10.
    T. Rouxel, J. L. Besson, C. Gault, P. Goursat, M. Leigh and S. Hampshire, ibid. 8 (1989) 1158.CrossRefGoogle Scholar
  11. 11.
    R. Ponraj and S. Ramakrishna Iyer, 46th Annual Technical Meeting, Indian Institute of Metals, Paper No. P/NF. 5.2 (Nov 1992). Udaipur, India.Google Scholar
  12. 12.
    W. D. Kingery, H. K. Browen and D. R. Uhlmann, “Introduction to ceramics” (Wiley, 1976) 704.Google Scholar
  13. 13.
    W. D. Cannon and T. G. Langdon, J. Mater. Sci. 23 (1988) 1.CrossRefGoogle Scholar
  14. 14.
    R. F. Davis and J. A. Pask, J. Amer. Ceram. Soc. 55 (1972) 525.CrossRefGoogle Scholar
  15. 15.
    V. M. Radhakrishnan, J. Mater. Engng. performance 1 (1992) 123.CrossRefGoogle Scholar
  16. 16.
    J. Newberger, A. Hafuer and D. Olteann, J. Brit. Ceram. Soc. 71 (1972) 89.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • R. Ponraj
    • 1
  • S. Ramakrishna Iyer
    • 1
  • V. M. Radhakrishnan
    • 1
  1. 1.Department of Metallurgical EngineeringIndian Institute of TechnologyMadrasIndia

Personalised recommendations