Journal of Materials Science

, Volume 29, Issue 16, pp 4351–4356 | Cite as

CeO1.5-stabilized tetragonal ZrO2

  • H. Y. Zhu


Ceria-stabilized tetragonal zirconia polycrystals show high toughness and high resistance to the low-temperature ageing degradation. However, ceria is less effective in stabilizing tetragonal zirconia compared to yttria and other trivalent oxides. The tetravalent oxide of CeO2 can be easily reduced to the trivalent CeO1.5, but phase separations occur leading to the destabilization of the tetragonal phase or the stabilization of the cubic phase. A procedure of high-temperature sintering and low-temperature reduction has been developed for preparing CeO1.5-stabilized tetragonal zirconia. It was found that 9 mol% CeO1.5 could stabilize the tetragonal zirconia to room temperature and that the stability region in the CeO1.5-ZrO2 system was extended to the lower dopant content region. The CeO1.5-stabilized tetragonal zirconia had a lower tetragonality and lower transformability compared to the CeO2-stabilized tetragonal zirconia with the same dopant mole percentage. The changes in the phase composition, tetragonality and stability caused by the reduction of CeO2 to CeO1.5 have been discussed in relation to the changes of oxygen stoichiometry, which is considered of the firstorder importance in the stabilization of polymorphous zirconia.


Zirconia Ceria CeO2 Yttria Mole Percentage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Tsukuma and M. Shimada, J. Mater. Sci. 20 (1985) 1178.CrossRefGoogle Scholar
  2. 2.
    Idem, Bull. Am. Ceram. Soc. 65 (1986) 1386.Google Scholar
  3. 3.
    M. HIRANO and H. INADA, J. Mater. Sci. 26 (1191) 5047.Google Scholar
  4. 4.
    A. H. Heuer, F. F. Lange, M. V. Swain and A. G. Evans, J. Am. Ceram. Soc. 69 [3] (1986) i.CrossRefGoogle Scholar
  5. 5.
    M. Hillert and T. Sakuma, Acta. Metall. Mater. 39 (1991) 1111.CrossRefGoogle Scholar
  6. 6.
    M. Hillert, J. Am. Ceram. Soc. 74 (1991) 2005.CrossRefGoogle Scholar
  7. 7.
    “Phase Diagram for Ceramists (VI)” edited by R. S. Roth (The American Ceramic Society, Columbus, OH, 1987) Fig. 6835C, p. 405.Google Scholar
  8. 8.
    M. Yoshimura, Am. Ceram. Soc. Bull. 67 (1988) 1950.Google Scholar
  9. 9.
    M. Yoshimura, M. Yoshida, T. Noma and S. Somiya, J. Mater. Sci. 25 (1990) 2011.CrossRefGoogle Scholar
  10. 10.
    D. J. Kim and T. Y. Tien, J. Am. Ceram. Soc. 74 (1991) 3061.CrossRefGoogle Scholar
  11. 11.
    D. J. Kim, ibid. 73 (1990) 115.CrossRefGoogle Scholar
  12. 12.
    H. Y. Zhu, ibid. to be published.CrossRefGoogle Scholar
  13. 13.
    K. H. Heussner and N. Claussen, ibid. 72 (1989) 1044.CrossRefGoogle Scholar
  14. 14.
    H. Y. Zhu, T. Hirata and Y. Muramatsu, ibid. 75 [10] (1992) 2843.CrossRefGoogle Scholar
  15. 15.
    T. Hirata, H. Y. Zhu, K. Nakamura and M. Kitajima, Solid State Commun. 80 (1991) 991.CrossRefGoogle Scholar
  16. 16.
    A. I. Leonov, A. B. Andreeva and E. K. Keler, Izv. Akad. Nauk SSSR Neorg. Mater. 2 (1966) 137.Google Scholar
  17. 17.
    M. Yoshimura and T. Sata, Bull. Tokyo Inst. Technol. 108 (1972) 25.Google Scholar
  18. 18.
    T. Sata and M. Yoshimura, ibid. 84 (1968) 13.Google Scholar
  19. 19.
    T. Muroi, J. Echigoya and H. Suto, Trans. Jpn. Inst. Metals 29 (1988) 634.CrossRefGoogle Scholar
  20. 20.
    E. Tani, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc. 66 (1983) 506.CrossRefGoogle Scholar
  21. 21.
    C. Leach and N. Khan, J. Mater. Sci. 26 (1991) 2026.CrossRefGoogle Scholar
  22. 22.
    H. Y. Zhu, in “Extended Abstracts, The 6th International Conference on Mechanical Behavior of Materials”, (28 July–3 August 1991), Kyoto, Japan (The Society of Materials Science, Japan) p. 223.Google Scholar
  23. 23.
    H. Y. Zhu and T. Hirata, Solid State Commun. 84 (1992) 527.CrossRefGoogle Scholar
  24. 24.
    T. Sakuma, Y. Yoshizawa and M. Suto, J. Mater. Sci. 20 (1985) 2399.CrossRefGoogle Scholar
  25. 25.
    H. Y. ZHU, Mater. Sci. Tech., accepted.Google Scholar
  26. 26.
    M. V. Swain and R. H. J. Hannink, ibid. 72 (1989) 1358.Google Scholar
  27. 27.
    E. G. Rauh and S. P. Grag, ibid. 63 (1980) 239.Google Scholar
  28. 28.
    M. Cole, C. R. A. Catlow and J. P. Dragun, J. Phys. Chem. Solids 51 (1990) 507.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. Y. Zhu
    • 1
  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations