Advertisement

Journal of Materials Science

, Volume 29, Issue 16, pp 4331–4338 | Cite as

Dielectric properties of conducting polymer composites at microwave frequencies

  • V. -T. Truong
  • A. R. Codd
  • M. Forsyth
Papers

Abstract

The dielectric properties of conducting polymer composites containing polypyrrole (PPy) crushed films, PPy powder, polyaniline (PAn) base and acid powders as the dispersants and silicone rubber and vinyl ester as matrix materials have been investigated in the frequency range 2-18 GHz. The dielectric parameters such as the real part, ε′, and imaginary part, ε″, of the permittivity and loss tangent, tanδ, increase with increasing conductivity and concentration of the dispersant. The geometrical shape of the dispersant governs the ability of conductive network formation which is indicated by a large drop in the resistivity of the composite. Also, dispersant/matrix interactions and physical properties of the matrix influence the agglomeration of the dispersant phase which, in turn, affects the dielectric properties of the composites. Flakes of PPy obtained by crushing highly conductive films and large PAn powder aggregates were unable to form a conducting network. The composites without a network of dispersant exhibit low dielectric parameters. On the other hand, high values of tan δ ranging from 0.7–1.1 were achieved for the PPy powder (15 parts)/silicone rubber composites where a conducting network was observed.

Keywords

Polyaniline Dielectric Property Loss Tangent Polypyrrole Silicone Rubber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Bur, Polymer 26 (1985) 963.CrossRefGoogle Scholar
  2. 2.
    A. Feldblum, Y. W. Park, A. J. Heeger, A. G. MacDiarmid, G. Wnek, F. Karasz and J. C. W. Chien, J. Polym. Sci. Polym. Phys. Ed. 19 (1981) 173.CrossRefGoogle Scholar
  3. 3.
    S. Hasegawa, K. Kamiya, J. Tanaka and M. Tanaka, Synth. Meth. 14 (1986) 97.CrossRefGoogle Scholar
  4. 4.
    G. Phillips, R. Suresh, J. Waldman, J. Kumar, J. I. Chen, S. Tripathy and J. C. Huang, J. Appl. Phys. 69 (1991) 899.CrossRefGoogle Scholar
  5. 5.
    R. H. M. van de Leur and B. de Ruiter, Synth. Meth. 44 (1991) 327.CrossRefGoogle Scholar
  6. 6.
    H. H. S. Javadi, K. R. Cromack, A. G. MacDiarmid and A. J. Epstein, Phys. Rev. B 39 (1989) 3579.CrossRefGoogle Scholar
  7. 7.
    J. Unsworth, A. Kaynak, B. A. Lunn and G. E. Beard, J. Mater. Sci. 28 (1993) 3307.CrossRefGoogle Scholar
  8. 8.
    M. Narkis, A. Ram and Z. Stein, Polym. Eng. Sci. 21 (1981) 1049.CrossRefGoogle Scholar
  9. 9.
    L. Benguigui, J. Yacubowicz and M. Narkis, J. Polym. Sci. B Polym. Phys. 25 (1987) 127.CrossRefGoogle Scholar
  10. 10.
    M. Ghofraniha and R. Salovey, Polym. Eng. Sci. 28 (1988) 58.CrossRefGoogle Scholar
  11. 11.
    J. Yacubowicz, M. Narkis and L. Benguigui, ibid. 30 (1990) 459.CrossRefGoogle Scholar
  12. 12.
    B. Wessling, ibid. 31 (1991) 1200.CrossRefGoogle Scholar
  13. 13.
    B.-L. Lee, ibid. 32 (1992) 36.CrossRefGoogle Scholar
  14. 14.
    M. Sumita, K. Sakata, Y. Hayakawa, S. Asai, K. Miyasaka and M. Tanemura, Colloid. Polym. Sci. 270 (1992) 134.CrossRefGoogle Scholar
  15. 15.
    A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somasiri and A. J. Epstein, in “Conducting Polymers Special Applications”, edited by Luis Alcácer (Reidel Dordrecht, 1987).Google Scholar
  16. 16.
    Hewlett-Packard Product Note no. 8510-3.Google Scholar
  17. 17.
    J. Yacubowicz, M. Narkis and S. Kenig, Polym. Eng. Sci. 30 (1990) 469.CrossRefGoogle Scholar
  18. 18.
    M. Blaszkiewicz, D. S. McLachlan and R. Newnham, ibid. 32 (1992) 421.CrossRefGoogle Scholar
  19. 19.
    S. K. Bhattacharya (ed.), “Metal-Filled Polymers: Properties and Applications” (Marcel Dekker, New York, 1986).Google Scholar
  20. 20.
    T. A. Ezquerra, M. Kulescza and F. J. Baltacalleja, Synth. Meth. 41–43 (1991) 915.CrossRefGoogle Scholar
  21. 21.
    B. Wessling, ibid. 45 (1991) 119.CrossRefGoogle Scholar
  22. 22.
    J. Gurland, Trans. Metall. Soc. AIME 236 (1966) 642.Google Scholar
  23. 23.
    R. P. Kusy, J. Appl. Phys. 48 (1977) 5301.CrossRefGoogle Scholar
  24. 24.
    J. J. Reilly and I. L. Kamel, Polym. Eng. Sci. 29 (1989) 1446.CrossRefGoogle Scholar
  25. 25.
    M. Aldissi and A. R. Bishop, Polymer 26 (1985) 622.CrossRefGoogle Scholar
  26. 26.
    K. Lichtennecker, Phys. Z. 19 (1918) 374.Google Scholar
  27. 27.
    For example, P. Hedvig, “Dielectric Spectroscopy of Polymers” (Hilger, Bristol, 1977) p. 282.Google Scholar
  28. 28.
    T. A. Ezquerra, F. Kremer and G. Wegner, in “Dielectric Properties of Heterogeneous Materials”, edited by A. Priou, “Progress in Electromagnetics Research 6” (Elsevier, New York, 1992).Google Scholar
  29. 29.
    K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita and K. Ishikawa, J. Mater. Sci. 17 (1982) 1610.CrossRefGoogle Scholar
  30. 30.
    S. Wu, “Polymer Interface and Adhesion” (Marcel Dekker, New York, 1982).Google Scholar
  31. 31.
    W. Y. Hsu, W. G. Holtje and J. R. Barkley, J. Mater. Sci. Lett. 7 (1988) 459.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • V. -T. Truong
    • 1
  • A. R. Codd
    • 1
  • M. Forsyth
    • 1
  1. 1.DSTO Aeronautical and Maritime Research LaboratoryMelbourneAustralia

Personalised recommendations