Advertisement

Journal of Materials Science

, Volume 29, Issue 16, pp 4286–4293 | Cite as

Nylon-6/rubber blends

Part III Stresses in and around rubber particles and cavities in a nylon matrix
  • K. Dijkstra
  • G. H. Ten Bolscher
Papers

Abstract

The stress field around a rubber particle and a cavitated particle in a nylon/rubber blend has been studied using an analytical and a finite element approach. Attention was paid to the influence of the mechanical properties of the dispersed phase and the applied stress state. The results show that the choice of the bulk modulus of the elastomer is crucial. It appeared that especially with a triaxial stress, the Von Mises stress increased strongly upon cavitation (a more than five-fold increase close to the particle) while the hydrostatic stress only increased slightly. Also, the stresses in particles in the neighbourhood of a cavity have been calculated. Stresses in particles lying in or close to the equatorial plane of the cavity were higher than stresses in the other particles. Therefore, propagation of cavitation is most likely to occur perpendicular to the applied stress.

Keywords

Rubber Stress State Cavitation Stress Field Disperse Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Ramsteiner and W. Heckmann, Polym. Commun. 26 (1985) 199.Google Scholar
  2. 2.
    R. J. M. Borggreve, R. J. Gaymans, J. Schuijer and J. F. Ingen Housz, Polymer 28 (1987) 1489.CrossRefGoogle Scholar
  3. 3.
    R. J. M. Borggreve, R. J. Gaymans and J. Schuijer, ibid. 30 (1989) 71.CrossRefGoogle Scholar
  4. 4.
    R. J. M. Borggreve, R. J. Gaymans and H. M. Eichenwald, ibid. 30 (1989) 78.CrossRefGoogle Scholar
  5. 5.
    F. Speroni, E. Castoldi, P. Fabbri and T. Casiraghi, J. Mater. Sci. 24 (1989) 2165.CrossRefGoogle Scholar
  6. 6.
    J. N. Goodier, ASME Appl. Mech. Trans. 55 (1933) 39.Google Scholar
  7. 7.
    I. Narisawa, T. Kuriyama and K. Ojima, Makromol. Chem. Makromol. Symp. 41 (1991) 87.CrossRefGoogle Scholar
  8. 8.
    D. W. Van Krevelen, in “Properties of Polymers” edited by D. W. van Krevelen (Eisevier Scientific, Amsterdam 1976) p. 271.Google Scholar
  9. 9.
    K. DIJKSTRA, A. J. OOSTENBRINK, R. J. GAYMANS, “8th International Conference on Deformation, Yield and Fracture of Polymers,” PRI Conference, Cambridge, April 1991, paper 9.Google Scholar
  10. 10.
    K. DUKSTRA, A. VAN DER WAL and R. J. GAYMANS, J. Mater. Sci. in press.Google Scholar
  11. 11.
    F. J. Guild and R. J. Young, ibid. 24 (1989) 2454.CrossRefGoogle Scholar
  12. 12.
    T. Fukui, Y. Kikuchi and T. Inoue, Polymer 32 (1991) 2367.CrossRefGoogle Scholar
  13. 13.
    Y. Huang and A. J. Kinloch, J. Mater. Sci. 27 (1992) 2753.CrossRefGoogle Scholar
  14. 14.
    H. J. SUE, “8th International Conference on Deformation, Yield and Fracture of Polymers,” PRI conference Cambridge, April 1991, paper 63.Google Scholar
  15. 15.
    S. Wu, Polymer 26 (1985) 1855.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Dijkstra
    • 1
  • G. H. Ten Bolscher
    • 1
  1. 1.University of TwenteEnschedeThe Netherlands

Personalised recommendations