Advertisement

Journal of Materials Science

, Volume 29, Issue 16, pp 4279–4285 | Cite as

Study of the stress corrosion cracking of GFRP: effect of the toughness of the matrix resin on the fatigue damage and stress corrosion cracking of GFRP

  • Y. Fujii
  • A. Murakami
  • K. Kato
  • T. Yoshiki
  • Z. Maekawa
  • H. Hamada
Papers

Abstract

The stress corrosion cracking of glass fibre-reinforced plastic (GFRP) accompanies a phenomenon of catastrophic failure as a result of the rapid fall in strength owing to corrosion breaking of the glass fibres. This produces a flat surface without pulling fibres out of the plane. Attack on the glass fibres can only occur by contact with an acid which must first diffuse into the matrix resin. It is confirmed, however, that no diffusion occurs or that it is too slow to be detected. The relationship between fatigue damage and stress corrosion in an acidic environment, has been investigated, focusing on the effect of matrix toughness on the resistance to stress corrosion failure of GFRP. Three types of GFRP, made from matrices with different toughness, were studied after subjecting them to fatigue damage at different levels.

Keywords

Polymer Fatigue Glass Fibre Flat Surface Stress Corrosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. S. Carswell and R. C. Roberts, Composites 11 (1980) 95.CrossRefGoogle Scholar
  2. 2.
    P. J. Hogg, D. Hull and M. J. Legg, in “Composite, Structures”, edited by I. H. Marshall (Eisevier Applied Science, London, 1981) p. 106.CrossRefGoogle Scholar
  3. 3.
    M. O'Connor, “GRP Vessels and Pipework for the Chemical and Process Industries” (Mechanical Engineering, London, 1983) p. 56.Google Scholar
  4. 4.
    G. P. Marshall and D. Harrison, Plast. Rubb. Proc. Appl. 2 (1982) 269.Google Scholar
  5. 5.
    R. C. Roberts, J. Mater. Sci. 20 (1985) 1341.CrossRefGoogle Scholar
  6. 6.
    S. W. Carswell, ASME Petrol. Div. 24 (1988) 105.Google Scholar
  7. 7.
    P. J. Hogg, Composites 14 (1983) 254.CrossRefGoogle Scholar
  8. 8.
    P. J. Hogg and D. Hull, in “Development in GFRP Technology” Vol. 1 edited by B. Harris (Applied Science, London, 1983) p. 37.Google Scholar
  9. 9.
    J. N. Price and D. Hull, J. Mater. Sci. 18 (1983) 2798.CrossRefGoogle Scholar
  10. 10.
    Idem, Compos. Sci. Technol. 28 (1987) 193.CrossRefGoogle Scholar
  11. 11.
    M. Kumosa, D. Hull and J. N. Price, J. Mater. Sci. 22 (1987) 331.CrossRefGoogle Scholar
  12. 12.
    P. J. Hogg, Prog. Rubber Plast. Technol. 5 (1989) 136.Google Scholar
  13. 13.
    Idem, Compos. Sci. Technol. 38 (1990) 23.CrossRefGoogle Scholar
  14. 14.
    A. K. Blendzki, G. W. Ehrenstein and A. Schiemann, Kunststoffe 79 (1989) 416.Google Scholar
  15. 15.
    R. J. Jones and H. D. Chandler, J. Mater. Sci. 20 (1985) 3320.CrossRefGoogle Scholar
  16. 16.
    B. D. Caddock and K. E. Evans, ibid. 25 (1990) 2498.CrossRefGoogle Scholar
  17. 17.
    B. D. Caddock, K. E. Evans and D. Hull, ibid. 22 (1987) 3368.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Y. Fujii
    • 1
  • A. Murakami
    • 2
  • K. Kato
    • 2
  • T. Yoshiki
    • 2
  • Z. Maekawa
    • 3
  • H. Hamada
    • 3
  1. 1.Seikow Chemical Engineering and Machinery Co.Japan
  2. 2.Department of Chemical EngineeringHimeji Institute of TechnologyJapan
  3. 3.Kyoto Institute of TechnologyKyotoJapan

Personalised recommendations