Journal of Materials Science

, Volume 29, Issue 16, pp 4273–4278 | Cite as

Sintering of glass matrix composites containing Al2O3 platelet inclusions

  • A. R. Boccaccini


The effect of alumina platelet inclusions on the sintering behaviour of a commercial aluminosilicate glass powder has been investigated by means of a heating microscope at 850°C. For platelet volume fractions ⩽0.15, no significant influence of the inclusions on the densification behaviour of the composite was found. Scherer's model for viscous sintering with rigid inclusions, which uses the Hashin-Shtrikman approximation for the composite shear viscosity, can be conveniently used to interpret the experimental results. However, the composite densification rate and the stresses caused by the inclusions can be correctly predicted using this model only for inclusion volume fractions lower than a critical value, given by the percolation threshold. For platelet volume fractions ⩽0.15, high-density glass matrix composites can be fabricated by simple pressureless sintering.


Aluminosilicate Percolation Threshold Glass Powder Rigid Inclusion Densification Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Brückner, Bol. Soc. Esp. Ceram. Vid. 31-C 1 (1992) 97.Google Scholar
  2. 2.
    K. P. Gadkaree and K. Chyung, Am. Ceram. Soc. Bull. 65 (1986) 370.Google Scholar
  3. 3.
    S. Vignesoult, G. Partridge and A. Hyde, Bol. Soc. Esp. Ceram. Vid. 31-C 4 (1992) 55.Google Scholar
  4. 4.
    Y. Cheng and D. P. Thompson, Silicates Ind. 1–2 (1991) 5.Google Scholar
  5. 5.
    R. Janssen and K. H. Heussner, Powder Met. Int. 23 (1991) 241.Google Scholar
  6. 6.
    C. Nischik, M. N. Seibold, N. A. Travitzky and N. Claussen, J. Am. Ceram. Soc. 74 (1991) 2464.CrossRefGoogle Scholar
  7. 7.
    I. Wadsworth and R. Stevens, J. Mater. Sci. 26 (1991) 6800.CrossRefGoogle Scholar
  8. 8.
    A. G. Evans, J. Am. Ceram. Soc. 65 (1982) 497.CrossRefGoogle Scholar
  9. 9.
    F. F. Lange and M. Metcalf, ibid. 66 (1983) 398.CrossRefGoogle Scholar
  10. 10.
    M. N. Rahaman and L. C. De Jonghe, ibid. 70 (1987) C-348.CrossRefGoogle Scholar
  11. 11.
    A. R. Boccaccini and G. Ondracek, in ‘Wissenschaftliche Beiträge der Friedrich-Schiller-Universität Jena”, edited by E. Schmutzer, 4th International Otto-Schott-Colloquium (Verlag der Friedrich-Schiller-Universitat, Jena, Jena, 1990) pp. 72–6.Google Scholar
  12. 12.
    A. R. Boccaccini, Sci. Sintering 23 (1991) 151.Google Scholar
  13. 13.
    R. E. Dutton and M. N. Rahaman, J. Am. Ceram. Soc. 75 (1992) 2146.CrossRefGoogle Scholar
  14. 14.
    G. W. Scherer, ibid. 70 (1987) 719.CrossRefGoogle Scholar
  15. 15.
    A. R. Boccaccini and G. Ondracek, Glastech. Ber. 65 (3) (1992) 73.Google Scholar
  16. 16.
    SCHOTT, Technische Gläser, Product information Nr. 40001 d. (1981)Google Scholar
  17. 17.
    Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11 (1963) 127.CrossRefGoogle Scholar
  18. 18.
    G. W. Scherer, Ceram. Bull. 70 (1991) 1059.Google Scholar
  19. 19.
    R. Zallen, “Physics of Amorphous Solids” (Wiley, New York, 1983) pp. 183–6.CrossRefGoogle Scholar
  20. 20.
    J. Boissonade, F. Barreau and F. Carmona, J. Phys. A Math. Gen. 16 (1983) 2777.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. R. Boccaccini
    • 1
  1. 1.Rheinisch-Westfälische Technische HochschuleInstitut für Gesteinshüttenkunde, Glas, Bio- und VerbundwerkstoffeAachenGermany

Personalised recommendations