Journal of Materials Science

, Volume 29, Issue 16, pp 4256–4259 | Cite as

Thermodilatometric behaviour of pure and doped ZrTiO4-SnO2

  • S. Maschio
  • A. Bachiorrini
  • G. Farnè


Thermodilatometric tests have been performed to investigate the shrinkage of green compacts of pure and ZnO-doped 4ZrO2-5TiO2-SnO2 prepared by dry ball milling, flo-deflocculation and coprecipitation. Experiments have shown that the powder preparation procedure has a significant influence on the sintering process. Optimizing the homogeneity composition, which is enhanced from dry ball milling to coprecipitation, raises the starting sintering temperature. The reduction of the dimension of the starting particles increases the sintering rate and the addition of ZnO favours the shrinkage of the green bodies. Coprecipitated products lead to the highest final density because the evaporation of tin oxide on firing is reduced.


Oxide Polymer Evaporation Milling Shrinkage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. McHale and R. S. Roth, J. Am. Ceram. Soc. 69 (1986) 827.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 66 (1983) C18.CrossRefGoogle Scholar
  3. 3.
    D. M. Iddles, A. Bell and A. J. Moulson, J. Mater. Sci. 27 (1992) 6303.CrossRefGoogle Scholar
  4. 4.
    E. Matijevic, Ace. Chem. Res. 14 (1981) 22.CrossRefGoogle Scholar
  5. 5.
    E. Matijevic, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1984) pp. 49–55.Google Scholar
  6. 6.
    H. K. BOWEN, “Physics and Chemistry of Packing Fine Ceramic Powders”, Annual Rep. DOE/ER/10588-3 (1982) pp. 3–11.Google Scholar
  7. 7.
    R. L. Coble, in “Kinetics of High-Temperature Processes”, edited by W. D. Kingery (MIT, Cambridge MA, 1959) pp. 47–163.Google Scholar
  8. 8.
    D. W. Johnson Jr, Am. Ceram. Soc. Bull. 62 (1981) 221.Google Scholar
  9. 9.
    F. F. Lange, J. Am. Ceram. Soc. 67 (1984) 83.CrossRefGoogle Scholar
  10. 10.
    W. H. Rhodes, ibid. 64 (1981) 19.CrossRefGoogle Scholar
  11. 11.
    F. F. Lange and T. K. Miller, ibid. 70 (1987) 896.CrossRefGoogle Scholar
  12. 12.
    F. F. Lange, in “Ceramic Microstructure'86: Role of Interfaces”, edited by J. Pask and A. G. Evans (Plenum Press, New York, 1988) pp. 497–508.Google Scholar
  13. 13.
    F. F. Lange and M. M. Hirlinger, J. Am. Ceram. Soc. 67 (1984) 164.CrossRefGoogle Scholar
  14. 14.
    D. R. Maurice and T. H. Courtney, Met. Trans. 21A (1990) 289.CrossRefGoogle Scholar
  15. 15.
    R. L. Coble, J. Appl Phys. 32 (1963) 787.CrossRefGoogle Scholar
  16. 16.
    F. B. Swinkels and M. F. Ashby, Acta Metall. 28 (1981) 259.CrossRefGoogle Scholar
  17. 17.
    A. S. HELLE, K. E. EASTERLING and M. F. ASHBY, 33 (1985) 2163.Google Scholar
  18. 18.
    R. M. McMeeking and L. T. Kuhn, Acta Metall. Mater. 40 (1992) 961.CrossRefGoogle Scholar
  19. 19.
    B. J. Kellet and F. F. Lange, J. Am. Ceram. Soc. 72 (1989) 725.CrossRefGoogle Scholar
  20. 20.
    Idem, ibid. 72 (1989) 735.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. Maschio
    • 1
  • A. Bachiorrini
    • 1
  • G. Farnè
    • 2
  1. 1.Facoltà di IngegneriaDipartimento di Scienze e Tecnologie ChimicheUdineItaly
  2. 2.Istituto di Scienze e Tecnologie dell'lngegneria ChimicaGenovaItaly

Personalised recommendations