Journal of Materials Science

, Volume 29, Issue 16, pp 4244–4251 | Cite as

Study of lanthanum-based colloidal sols formation

  • P. Chanaud
  • A. Julbe
  • P. Vaija
  • M. Persin
  • L. Cot


Lanthanum-based colloidal sols have been studied in order to synthesize lanthanum oxychloride inorganic coatings or thin layers for catalytic applications. The singularity of this process leading to microporous coatings is based on the polymerization of lanthanum acetate species in aqueous solution. Sols are prepared from lanthanum chloride modified by acetate ions. The sol formation mechanism can be explained by La3+ hydrolysis, giving basic species (La (OH)X with x = 1 or 2) which condense and lead to polycondensed hydroxo ions. In the pH range of sol formation, OH and CH3COO are ligands competitive towards La3+; when acetate ions are present, the condensation rate is limited by lanthanum acetate complexation. Several distributions of lanthanum hydroxide and acetate species are given and related to experimental results (pH, Fourier transform infrared (FTIR) spectroscopy, turbidity and stability of sols, SEM and TEM analysis of coatings). FTIR spectroscopy has been revealed as useful to evidence a polymerization of acetate species in sols leading to translucent gels. These gels allow the preparation of almost fully dense LaOCl coatings after thermal treatment above 450°C. These results confirm the possible polymerization of lanthanum acetate complexes during the drying step and emphasize the great effect of acetate species on the final material texture.


Turbidity Lanthanum Oxychloride Catalytic Application Material Texture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. D. Campbell, H. Zhang and J. H. Lunsford, J. Phys. Chem. 92 (1988) 750.CrossRefGoogle Scholar
  2. 2.
    S. Terada, Y. Hirai and K. Kubota, Solid State Commun. 68 (1988) 567.CrossRefGoogle Scholar
  3. 3.
    M. P. Rosyneck and D. T. Magnuson, J. Catal. 46 (1977) 402.CrossRefGoogle Scholar
  4. 4.
    J. Williams, R. J. Jones, J. M. Thomas and J. Kent, Catal. Lett. 3 (1989) 247.CrossRefGoogle Scholar
  5. 5.
    A. Kienneman, R. Kieffer, A. Kaddouri, P. Poix and J. L. Rehpringer, Catal. Today 6 (1990) 409.CrossRefGoogle Scholar
  6. 6.
    A. Julbe, P. Chanaud, A. Larbot, C. Guizard, L. Cot, C. Mirodatos and H. Borges, in “Inorganic Membranes”, Key Engineering Materials Vols 61 and 62, edited by A. J. Burggraff, J. Charpin and L. Cot (Trans Tech, Zurich, 1991) p. 65.Google Scholar
  7. 7.
    H. P. Hsieh, Catal. Rev.-Sci. Eng. 33 (1991) 1.CrossRefGoogle Scholar
  8. 8.
    K. Keizer, V. T. Zaspalis and A. J. Burggraff, “Ceramics Today — Tomorrows Ceramics, part D”, Materials Science Monographs, Vol. 66D (1991) p. 2511.Google Scholar
  9. 9.
    K. A. Gschneider, in “Handbook on the Physics and Chemistry of Rare Earths”, edited by J. Eyring and L. Eyring (North-Holland, Amsterdam, 1979) p. 213.Google Scholar
  10. 10.
    A. Habenschuss and F. H. Speeding, J. Chem. Phys. 70 (1979) 3758.CrossRefGoogle Scholar
  11. 11.
    W. Meier, P. Bopp, M. M. Probst, E. Spohr and J. I. Lin, J. Phys. Chem. 94 (1990) 4672.CrossRefGoogle Scholar
  12. 12.
    J. Kragten, in “Atlas of Metal Ligands. Equilibria in aqueous solution”, edited by Ellis Horswood (Wiley, Chichester, 1978) p. 416.Google Scholar
  13. 13.
    G. Biedermann and L. Ciavatta, Acta Chem. Scand. 15 (1961) 1347.CrossRefGoogle Scholar
  14. 14.
    N. V. Aksel'rud and V. B. Spivakovski, Russ. J. Inorg. Chem. 5 (1960) 158.Google Scholar
  15. 15.
    N. N. Mironov and N. P. Chernyaev, ibid. 6 (1961) 1109.Google Scholar
  16. 16.
    L. P. Moisa and V. B. Spivakovski, ibid. 15 (1970) 1513.Google Scholar
  17. 17.
    A. Ringbom, in “Les complexes en Chimie Analytique” (Ed. Dunod, Paris, 1967) p. 297.Google Scholar
  18. 18.
    D. G. Karraker, J. Inorg. Nucl. Chem. 31 (1969) 2815.CrossRefGoogle Scholar
  19. 19.
    A. I. Grigor'ev and V. N. Maksimjov, Russ. J. Inorg. Chem. 9 (1964) 580.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Chanaud
    • 1
  • A. Julbe
    • 1
  • P. Vaija
    • 1
  • M. Persin
    • 1
  • L. Cot
    • 1
  1. 1.Laboratoire de Physicochimie des Matériaux (URA 1312 CNRS)Ecole Nationale Supérieure de ChimieMontpellier Cedex 1France

Personalised recommendations