Advertisement

Journal of Materials Science

, Volume 29, Issue 16, pp 4232–4237 | Cite as

Strength variability and size effect of Nicalon fibre bundles

  • H. F. Wu
  • L. L. Wu
Papers

Abstract

Statistical strength and size effect of Nicalon fibre bundles are studied. The Weibull type of statistical theory underlying predictions of bounding Nicalon fibre bundle strength is presented and discussed. The relationship of bundle strength to single Nicalon filament strength and a model explaining the correlation are also discussed. The predicted values for Nicalon fibre bundles were in close agreement with the experimental data. Characterization of Nicalon fibres or bundles provides an insight into the ultimate mechanical performance of ceramic-matrix composites.

Keywords

Polymer Experimental Data Statistical Theory Close Agreement Mechanical Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Brennan and K. M. Prewo, J. Mater. Sci. 17 (1982) 2371.CrossRefGoogle Scholar
  2. 2.
    M. Dauchier, P. Macicq and J. Mace, M.E.S. Rev. Metall. 79 (1982) 453.Google Scholar
  3. 3.
    G. Simon and A. R. Bunsell, J. Mater. Sci. 19 (1984) 3649.CrossRefGoogle Scholar
  4. 4.
    H. F. Wu and A. N. Netravali, ibid. 27 (1992) 3318.CrossRefGoogle Scholar
  5. 5.
    H. E. Daniel, Proc. Roy. Soc. (London) 183A (1945) 405.Google Scholar
  6. 6.
    S. L. Phoenix and R. L. Smith, Int. J. Solids Struct. 19 (1983) 479.CrossRefGoogle Scholar
  7. 7.
    R. E. Pitt and S. L. Phoenix, Textile Res. J. 51 (1981) 408.CrossRefGoogle Scholar
  8. 8.
    J. M. Hedgepeth and P. van Dyke, J. Compos. Mater. 1 (1967) 294.CrossRefGoogle Scholar
  9. 9.
    F. T. S. Peirce, J. Textile Inst. 17 (1926) 355.CrossRefGoogle Scholar
  10. 10.
    W. WEIBULL, Ingeniorsvetenskapakademeiens, Handlinger No. 151 (1939).Google Scholar
  11. 11.
    H. F. Wu, Ph.D. thesis, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York (1987).Google Scholar
  12. 12.
    H. F. Wu, S. L. Phoenix and P. Schwartz, J. Mater. Sci. 23 (1988) 1851.CrossRefGoogle Scholar
  13. 13.
    Nicalon Product Data Sheet (Dow Corning Corporation, Midland, MI, 1992).Google Scholar
  14. 14.
    K. K. Phani, J. Mater. Sci. 23 (1988) 2424.CrossRefGoogle Scholar
  15. 15.
    K. Goda and H. Fukunga, ibid. 21 (1986) 4475.CrossRefGoogle Scholar
  16. 16.
    E. T. Lee, “Statistical Methods for Survival Data Analysis” (Lifetime Learning Publications, Belmont, CA, 1980) pp. 243–45.Google Scholar
  17. 17.
    A. C. Cohen, Technometrics 7 (1965) 579.CrossRefGoogle Scholar
  18. 18.
    A. S. Watson and R. L. Smith, J. Mater. Sci. 20 (1985) 3260.CrossRefGoogle Scholar
  19. 19.
    S. L. Phoenix, P. Schwartz and H. H. Robinson IV, Compos. Sci. Technol. 32 (1988) 81.CrossRefGoogle Scholar
  20. 20.
    P. Schwartz, A. N. Netravali and S. Sembach, Textile Res. J. 56 (1986) 502.CrossRefGoogle Scholar
  21. 21.
    H. D. WAGNER, in Proceedings of ICCM IV/ECCM 2 London, 1987, Vol. 5, p. 517.Google Scholar
  22. 22.
    K. K. Phani, J. Mater. Sci. 23 (1988) 941.CrossRefGoogle Scholar
  23. 23.
    P. M. SAWKO and H. K. TRAN, NASA Technical Brief ARC-11849.Google Scholar
  24. 24.
    Z. Chi, T. Chou and G. Shen, J. Mater. Sci. 19 (1984) 3319.CrossRefGoogle Scholar
  25. 25.
    D. M. Kotchick, R. C. Hink and R. E. Tressler, J. Compos. Mater. 9 (1975) 327.CrossRefGoogle Scholar
  26. 26.
    J. R. Brockenbrough, L. E. Forsythe and R. L. Rolf, J. Amer. Ceram. Soc. 69 (1986) 634.CrossRefGoogle Scholar
  27. 27.
    R. L. Rolf and J. S. Weyand, Amer. Ceram. Soc. Bull. 64 (1985) 1360.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. F. Wu
    • 1
  • L. L. Wu
    • 1
  1. 1.Alcoa Technical CenterAlcoa CenterPennsylvaniaUSA

Personalised recommendations