Advertisement

Journal of Materials Science

, Volume 29, Issue 16, pp 4225–4231 | Cite as

Plasma-enhanced fluorination of YBa2Cu3O7−δ ceramics

Part I Improvement of the superconducting properties
  • C. Magro
  • A. Tressaud
  • L. Lozano
  • N. Hudáková
  • C. Cardinaud
  • G. Turban
Papers

Abstract

The radiofrequency plasma technique involving mixtures of CF4+O2 gases has been applied to the surface treatment of high Tc superconducting oxides (YBa2Cu3O7−δ). Investigation of the various experimental parameters of the process has shown that the improvement of the critical current density, Jc, mainly depends on the inlet precursor composition CF4+τ%O2, on the total pressure and on the reaction time. The presence of fluorine in the bulk of the ceramics has been observed from electron microprobe analysis, together with an increase of the “Cu3+” content. The plasma-enhanced fluorination (PEF) treatment improves the superconducting properties of the materials: both values of the resistivity in the normal state and of the superconducting transition width are reduced and the critical transition temperature is improved by about 1 K.

Keywords

Reaction Time Transition Temperature Fluorine Total Pressure Surface Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Jin, T. M. Tiefel and R. C. Sherwood, Phys. Rev. B37 (1987) 7850.Google Scholar
  2. 2.
    P. De Rango, PhD thesis, University J. Fourier, Grenoble (1992).Google Scholar
  3. 3.
    S. J. KEATING, I. WEI and T. Y. CHIEN, in “Ceramic Superconductors II”, (American Ceramic Society, 1988) p. 43.Google Scholar
  4. 4.
    J. M. Dance, A. Tressaud, B. Chevalier, J. Darriet and J. Etourneau, Solid State Ion. 32-33 (1989) 1188.CrossRefGoogle Scholar
  5. 5.
    B. LEPINE, PhD thesis, University Bordeaux I (1990).Google Scholar
  6. 6.
    D. W. Hess, in “Microelectronic materials and processes”, edited by R. A. Levy (Kluwer Academic Press, New York, 1989) p. 459.CrossRefGoogle Scholar
  7. 7.
    H. Bui, H. Carchano and D. Sanchez, Thin Solid Films 13 (1972) 207.CrossRefGoogle Scholar
  8. 8.
    J. M. Heintz, C. Magro, J. P. Bonnet, K. Fröhlich and P. Dordor, J. Less-Common Metals 164–165 (1990) 1377.CrossRefGoogle Scholar
  9. 9.
    C. MAGRO, PhD thesis, University Bordeaux I (1992).Google Scholar
  10. 10.
    C. P. Bean, Rev. Mod. Phys. 36 (1964) 31.CrossRefGoogle Scholar
  11. 11.
    C. J. Mogab, J. Electrochem. Soc. 124 (1977) 1263.Google Scholar
  12. 12.
    I. C. Plumb and K. R. Ryan, Plasma Chem. Plasma Process. 6 (1986) 205.CrossRefGoogle Scholar
  13. 13.
    SEONG-JU PARK, C. P. SUN and J. T. YEH, in “Proceedings of the Materials Research Society Symposium” Pittsburg, April 1986, edited by J. Coburn, R. A. Gottscho and D. W. Hess, Vol. 68 (1986) p. 65.Google Scholar
  14. 14.
    R. D'Agostino, F. Cramarossa, S. De Benedictis and G. Ferraro, J. Appl. Phys. 52 (1981) 1259.CrossRefGoogle Scholar
  15. 15.
    A. T. Bell, J. Macromol. Sci. Chem. A10 (1976) 379.Google Scholar
  16. 16.
    G. TURBAN, PhD thesis, University Nantes (1981).Google Scholar
  17. 17.
    N. Mutsukura and G. Turban, Vacuum 39 (1989) 579.CrossRefGoogle Scholar
  18. 18.
    R. D'Agostino, F. Cramarossa and F. Illuzzi, J. Appl. Phys. 61 (1987) 2754.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. Magro
    • 1
  • A. Tressaud
    • 1
  • L. Lozano
    • 1
  • N. Hudáková
    • 1
  • C. Cardinaud
    • 2
  • G. Turban
    • 2
  1. 1.Laboratoire de Chimie du Solide du CNRS, 351 cours de la LibérationUniversité de Bordeaux ITalence CedexFrance
  2. 2.Institut des Matériaux de NantesNantes Cedex 03France

Personalised recommendations