Journal of Materials Science

, Volume 29, Issue 16, pp 4205–4215 | Cite as

Interfacial stability, oxidation response and mechanical properties of a Nicalon™ Fibre reinforced chemical bonded ceramic matrix composite

  • A. Bandyopadhyay
  • P. B. Aswath


A slurry of monoaluminum phosphate with fine Al2O3 powder was infiltrated into eight harness satin fabric of Nicalon™ fibres. The infiltrated fabrics were laid up in 16 plies and then cured in an autoclave. Due to the chemical reaction between alumina and monoaluminum phosphate, aluminum phosphate was produced. Carbon coated and uncoated fibres were used to manufacture these composites to produce weak and strong interfaces between matrix and fibres. Two different processing routes were used during manufacturing, which resulted in different amounts of porosity content in the final composites. Thermogravimetric analysis carried out at 850°C for 6000 min in air showed negligible weight change, indicating stable fibres in the composites. Four-point bend flexure tests were conducted at room temperature, 700 and 850°C. Strong interface composites completely failed at high temperatures due to fibre fracture, but a shear dominated delamination-type interface failure was observed for the weak interface composites. Strong interface composites exhibited better flexure strengths than the weak interface composites under all conditions of processing and orientations. However, the weak interface composites absorbed significantly larger amounts of energy before failure compared to the strong interface composites. Little influence of porosity content was seen on flexure properties both at room and elevated temperatures. High temperature failure behaviour is explained using classical lamination theory.


Final Composite Ceramic Matrix Composite Fine Al2O3 Flexure Strength Flexure Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. K. FREBER and V. J. TENNERY, “Engineering materials handbook”, Vol 4 (ASM) p. 959.Google Scholar
  2. 2.
    W. R. Canon and T. G. Langdon, J. Mater. Sci. 23 (1988) 1.CrossRefGoogle Scholar
  3. 3.
    L. Ewart and S. Suresh, J. Mater. Sci. 22 (1987) 1173.CrossRefGoogle Scholar
  4. 4.
    M. Rühle and A. G. Evans, Progr. Mater. Sci. 33 (1989) 85.CrossRefGoogle Scholar
  5. 5.
    R. O. Ritchie, in Proceedings of the 5th International Conference of Mechanical Behaviour of Materials, edited by M. G. Yan, S. H. Zhang and Z. M. Zheng (Pergamon, Oxford, 1988).Google Scholar
  6. 6.
    A. G. Evans, Phil. Mag. 26 (1972) 1327.CrossRefGoogle Scholar
  7. 7.
    J. W. Hutchinson, Acta Metall. 35 (1987) 1605.CrossRefGoogle Scholar
  8. 8.
    A. G. Evans and K. T. Faber, J. Amer. Ceram. Soc. 67 (1984) 255.CrossRefGoogle Scholar
  9. 9.
    F. F. Lange, Phil. Mag. 22 (1970) 983.CrossRefGoogle Scholar
  10. 10.
    J. R. Brockenbrough and S. Suresh, Acta. Metall. 38 (1990) 55.CrossRefGoogle Scholar
  11. 11.
    D. M. Roy, Science 635 (1987) 651.CrossRefGoogle Scholar
  12. 12.
    R. E. Steinke, M. R. Silsbee, D. K. Agrawal, R. Roy and D. M. Roy, Cement Concrete Res. 21 (1991) 66.CrossRefGoogle Scholar
  13. 13.
    Y. Ming Chiang, J. S. Haggerty, R. P. Messner and C. Demetry, Ceram. Bull. 68 (1989) 420.Google Scholar
  14. 14.
    T. C. Simonton, R. Roy, S. Komeraneni and E. Breval, J. Mater. Res. 1 (1986) 667.CrossRefGoogle Scholar
  15. 15.
    R. A. MARRA, D. J. BRAY, D. J. MOESLEIN and M. V. VANCE, “Aluminium phosphate bonded ceramics composites”, ALCOA Technical Report (1991).Google Scholar
  16. 16.
    C. ZWEBEN and J. C. NORMAN, SAMPEQ. July (1976) 1.Google Scholar
  17. 17.
    T. Ishikawa and T. W. Chou, J. Mater. Sci. 17 (1982) 3211.CrossRefGoogle Scholar
  18. 18.
    T. Ishikawa and T. W. Chou, J. Mater. Sci. 18 (1983) 2260.CrossRefGoogle Scholar
  19. 19.
    L. W. Chang, S. S. Yau and T. W. Chou, Composites 18 (1987) 233.CrossRefGoogle Scholar
  20. 20.
    F. J. Gonzalez and J. W. Halloran, Amer. Ceram. Soc. Bull. 59 (1980) 727.Google Scholar
  21. 21.
    R. M. Jones, “Mechanics of composites materials” (Scripta, Washington DC, 1975).CrossRefGoogle Scholar
  22. 22.
    T. Ishikawa and T. W. Chou, J. Mater Sci. 17 (1982) 3217.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Bandyopadhyay
    • 1
  • P. B. Aswath
    • 1
  1. 1.Department of Mechanical and Aerospace Engineering and Materials Science and Engineering ProgramUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations