Journal of Materials Science

, Volume 29, Issue 16, pp 4184–4190 | Cite as

Direct observation of the fracture of CAS-glass/SiC composites

PART II Notched tension
  • H. R. Shercliff
  • P. W. R. Beaumont
  • G. Vekinis


The fracture behaviour of a CAS-glass/SiC-fibre-reinforced composite was observed by dynamic in situ scanning electron microscopy (SEM). In a companion paper [1], tests on common delamination geometries are described and the basis of micromechanics models is critically evaluated. Flexure geometries and also the unnotched tensile response of ceramicmatrix composites (CMCs) have received considerable attention, both theoretically and experimentally. The effect of through-thickness notches on the tensile fracture of CMCs has however been relatively neglected. Previous work on polymer-matrix composites demonstrates the strong influence of subcritical damage on the fracture behaviour. In this paper we examine failure of notched CAS-glass/SiC composites in tension, under static- and fatigue-loading conditions, using a combination of in situ and conventional test methods. The subcritical damage which forms is compared with that in polymer-matrix composites, and the consequences for prediction of the notched strength are discussed.


Polymer Microscopy Electron Microscopy Scanning Electron Microscopy Strong Influence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. R. Shercliff, G. Vekinis and P. W. R. Beaumont, J. Mater. Sci. 29 (1994) 0000.CrossRefGoogle Scholar
  2. 2.
    J. AVESTON, G. A. COOPER and A. KELLY, Proceedings of the National Physical Laboratory Conference on Properties of Fibre Composites Guildford, IPC Science and Technology (1971) p. 15.Google Scholar
  3. 3.
    D. B. Marshall, B. N. Cox and A. G. Evans, Acta Metall. 33 (1985) 2013.CrossRefGoogle Scholar
  4. 4.
    B. Budiansky, J. W. Hutchinson and A. G. Evans, J. Mech. Phys. Solids 34 (1986) 164.CrossRefGoogle Scholar
  5. 5.
    W. A. Curtin, J. Amer. Ceram. Soc. 74 (1991) 2837.CrossRefGoogle Scholar
  6. 6.
    F. W. Zok and S. M. Spearing, Acta Metall. Mater. 40 (1992) 2033.CrossRefGoogle Scholar
  7. 7.
    A. W. Pryce and P. A. Smith, ibid. 41 (1993) 1269.CrossRefGoogle Scholar
  8. 8.
    Idem, ibid. in press.CrossRefGoogle Scholar
  9. 9.
    D. M. Marshall and B. N. Cox, Acta Metall. 35 (1987) 2607.CrossRefGoogle Scholar
  10. 10.
    F. W. Zok, O. Sbaizero, C. L. Hom and A. G. Evans, J. Amer. Ceram. Soc. 74 (1990) 187.CrossRefGoogle Scholar
  11. 11.
    B. N. Cox and D. B. Marshall, Acta Metall. Mater. 39 (1991) 579.CrossRefGoogle Scholar
  12. 12.
    B. N. Cox, ibid. 39 (1991) 1189.CrossRefGoogle Scholar
  13. 13.
    B. N. Cox and C. S. LO, ibid. 40 (1992) 69.CrossRefGoogle Scholar
  14. 14.
    Idem, ibid. 40 (1992) 1487.CrossRefGoogle Scholar
  15. 15.
    M. T. Kortschot and P. W. R. Beaumont, Compos. Sci. Tech. 39 (1990) 289.CrossRefGoogle Scholar
  16. 16.
    Idem, ibid. (1990) 303.CrossRefGoogle Scholar
  17. 17.
    M. T. Kortschot, M. F. Ashby and P. W. R. Beaumont, ibid. 40 (1991) 147.CrossRefGoogle Scholar
  18. 18.
    Idem, ibid. 40 (1991) 167.CrossRefGoogle Scholar
  19. 19.
    S. M. Spearing and P. W. R. Beaumont, ibid. 44 (1992) 159.CrossRefGoogle Scholar
  20. 20.
    Idem, ibid. 44 (1992) 299.CrossRefGoogle Scholar
  21. 21.
    S. M. Spearing, P. W. R. Beaumont and M. F. Ashby, ibid. 44 (1992) 169.CrossRefGoogle Scholar
  22. 22.
    S. M. Spearing, P. W. R. Beaumont and P. A. Smith, ibid. 44 (1992) 309.CrossRefGoogle Scholar
  23. 23.
    S. M. Spearing, P. W. R. Beaumont and M. T. Kortschot, Composites 23 (1992) 305.CrossRefGoogle Scholar
  24. 24.
    R. A. DIMANT, H. R. SHERCLIFF and P. W. R. BEAUMONT, unpublished work.Google Scholar
  25. 25.
    M. T. Kortschot, PhD thesis, Cambridge University, Cambridge (1988).Google Scholar
  26. 26.
    F. E. Heredia, S. M. Spearing, A. G. Evans, P. Mosher and W. A. Curtin, J. Amer. Ceram. Soc. 75 (1992) 3017.CrossRefGoogle Scholar
  27. 27.
    F. E. Heredia, S. M. Spearing, T. J. Mackin, M. Y. He, A. G. Evans, P. Mosher and P. Brondsted, ibid. in press.CrossRefGoogle Scholar
  28. 28.
    L. P. Zawada, L. M. Butkus and G. A. Hartmann, J. Amer. Ceram. Soc. 14 (1991) 2851.CrossRefGoogle Scholar
  29. 29.
    A. W. Pryce and P. A. Smith, J. Mater. Sci. 27 (1992) 2695.CrossRefGoogle Scholar
  30. 30.
    D. S. Beyerle, S. M. Spearing and A. G. Evans, J. Amer. Ceram. Soc. 75 (1992) 3321.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. R. Shercliff
    • 1
  • P. W. R. Beaumont
    • 1
  • G. Vekinis
    • 2
  1. 1.Engineering DepartmentCambridge UniversityCambridgeUK
  2. 2.“Demokritos” National Centre for Scientific ResearchInstitute of Materials ScienceAthensGreece

Personalised recommendations