Advertisement

Journal of Materials Science

, Volume 29, Issue 16, pp 4135–4151 | Cite as

Bismuth oxide-based solid electrolytes for fuel cells

  • A. M. Azad
  • S. Larose
  • S. A. Akbar
Review

Abstract

During the last three decades, a large number of investigations has been reported pertaining to the science and technology of solid oxide fuel cells (SOFCs) based mainly on the yttria-stabilized zirconia (YSZ) electrolyte. Because of the problems associated with the high temperature of operation (~ 1000°C) of the YSZ-based cells, there has been a substantial effort to develop alternative electrolytes with ionic conductivity comparable to that of YSZ at relatively lower temperatures. This review presents a systematic evolution in the area of the development of new electrolytes based on bismuth sesquioxide for fuel cell applications at moderate temperatures.

Keywords

Oxide Polymer Zirconia Fuel Cell Bismuth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Proceedings of the Grove Anniversary Fuel Cell Symposium”, Royal Institution, London, 18–21 September 1989 (Elsevier, Amsterdam, 1990).Google Scholar
  2. 2.
    S. Srinivasan, F. J. Salzano and A. R. Landgrebe (eds), “Industrial Water Electrolysis”, (The Electrochemical Society, Princeton, NJ, 1978).Google Scholar
  3. 3.
    K. Kendal, Am. Ceram. Soc. Bull. 70 (1991) 1159.Google Scholar
  4. 4.
    N. Q. Minh, Chemtech. 21 (1991) 32.Google Scholar
  5. 5.
    Idem. ibid., Chemtech. 21 (1991) 120.Google Scholar
  6. 6.
    B. C. H. Steele, I. Kelly, H. Middleton and R. Rudkin, Solid State Ionics 28–30 (1988) 1547.Google Scholar
  7. 7.
    D. C. Fee and J. P. Ackerman, Fuel Cell Seminar, Courtesy Associates, Washington DC (1983) p. 11.Google Scholar
  8. 8.
    H. Binder, A. Koehling, A. Krupp, K. Richter and G. Sandstede, Electrochim. Acta 8 (1963) 781.Google Scholar
  9. 9.
    T. H. Etsell and S. N. Flengas, Chem. Rev. 70 (1970) 339.Google Scholar
  10. 10.
    Y. L. Sandler, J. Electrochem. Soc. 118 (1977) 1378.Google Scholar
  11. 11.
    N. J. Maskalick and C. C. Sun, ibid. 118 (1977) 1386.Google Scholar
  12. 12.
    H. S. Isaacs, in “Advances in Ceramics”, Vol. 3, “Science and Technology of Zirconia” edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, OH, (1981) p. 406.Google Scholar
  13. 13.
    O. Yamamoto, Y. Takeda, R. Kanno and M. Noda, in “Advances in Ceramics”. Vol. 24 “Science and Technology of Zirconia III”, edited by S. Somiya (The American Ceramic Society, Columbus, OH, 1988) p. 829.Google Scholar
  14. 14.
    S. F. Palguev, V. K. Dilderman and A. D. Neuimin, J. Electrochem. Soc. 122 (1975) 745.Google Scholar
  15. 15.
    K. S. Goto and W. Pluschkell, in “Physics of Electrolytes”, vol. 2, edited by J. Hladik (Academic Press, London, 1972) p. 540.Google Scholar
  16. 16.
    T. Takahashi, ibid.), p. 989.Google Scholar
  17. 17.
    P. Kofstad, “Nonstoichiometry, Diffusion and Electrical conductivity in Binary Metal Oxides” (Wiley Interscience, New York, 1972).Google Scholar
  18. 18.
    H. L. Tuller and A. S. Nowick, J. Electrochem. Soc. 122 (1975) 255.Google Scholar
  19. 19.
    R. T. Dirstine, R. N. Blumenthal and T. F. Kuech, ibid. 126 (1979) 264.Google Scholar
  20. 20.
    T. Kudo and H. Obayashi, ibid. 122 (1975) 142.Google Scholar
  21. 21.
    D. Y. Wang and A. S. Nowick, J. Solid State Chem. 35 (1980) 325.Google Scholar
  22. 22.
    R. G. Anderson and A. S. Nowick, Solid State Ionics 5 (1981) 547.Google Scholar
  23. 23.
    H. Yahiro, K. Eguchi and H. Arai, ibid. 21 (1986) 37.Google Scholar
  24. 24.
    P. N. Ross Jr. and T. G. Benjamin, J. Power Sources 1 (1976/1977) 311.Google Scholar
  25. 25.
    D. S. Tannhauser, J. Electrochem. Soc. 125 (1978) 1277.Google Scholar
  26. 26.
    H. Yahiro, Y. Baba, E. Eguchi and H. Arai, ibid. 135 (1988) 2077.Google Scholar
  27. 27.
    W. Weppner and H. Schubert, in “Advances in Ceramics”, Vol. 24, “Science and Technology of Zirconia III”, edited by S. Somiya (The American Ceramic Society, Columbus, OH, (1988) p. 837.Google Scholar
  28. 28.
    T. SATO, M. ISHITSUKA, T. FUKUSHIMA, T. ENDO and M. SCHIMADA, Mater. Sci. Forum 34–36 (188) 189.Google Scholar
  29. 29.
    B. Y. Liaw and W. W. Weppner, J. Electrochem. Soc. 138 (1991) 2478.Google Scholar
  30. 30.
    J. Drennan and S. P. S. Badwal, in “Advances in Ceramics”, Vol. 24B, “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto and H. Hanagida (The American Ceramic Society, Columbus, OH, 1988) p. 807.Google Scholar
  31. 31.
    B. C. H. Steele, in “High Conductivity Solid Ionic Conductors: Recent Trends and Applications”, edited by T. Takahashi (World Scientific, Singapore, 1989) p. 402.Google Scholar
  32. 32.
    K. Tsukuma and M. Schimada, J. Mater. Sci. 20 (1985) 1178.Google Scholar
  33. 33.
    N. Khan and B. C. H. Steele, Mater. Sci. Eng. B8 (1991) 265.Google Scholar
  34. 34.
    A. P. Sellar and B. C. H. Steele, Mater. Sci. Forum 34–36 (1988) 255.Google Scholar
  35. 35.
    R. L. Cook, R. C. MacDuff and A. F. Sammells, J. Electrochem. Soc. 137 (1990) 3309.Google Scholar
  36. 36.
    R. L. Cook and A. F. Sammells, Solid State Ionics 45 (1991) 311.Google Scholar
  37. 37.
    A. F. Sammells, R. L. Cook, J. H. White, J. J. Osborne and R. C. Macduff, ibid. 52 (1992) 111.Google Scholar
  38. 38.
    R. L. Cook, J. J. Osborne, J. H. White, R. C. MacDuff and A. F. Sammells, J. Electrochem. Soc. 139 (1992) L19.Google Scholar
  39. 39.
    J. B. Goodenough, A. Manthiram, M. Paranthaman and Y. S. Zhen, Mater. Sci. Eng. B12 (1992) 357.Google Scholar
  40. 40.
    B. C. H. Steele, ibid. B12 (1992) 79.Google Scholar
  41. 41.
    I. Kontoulis and B. C. H. Steele, J. Eur. Ceram. Soc. 9 (1992) 459.Google Scholar
  42. 42.
    M. Schwartz, B. F. Link and A. F. Sammells, J. Electrochem. Soc., 140 (1993) L62.Google Scholar
  43. 43.
    H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State Ionics 3–4 (1981) 359.Google Scholar
  44. 44.
    H. Iwahara, H. Uchida, K. Kondo and K. Ogaki, J. Electrochem. Soc. 135 (1989) 529.Google Scholar
  45. 45.
    H. Iwahara, H. Uchida, K. Ogaki and H. Nagato, ibid. 138 (1991) 295.Google Scholar
  46. 46.
    B. HEED and A. LUNDEN, Technical Report to the Swedish Board of Technical Development, Sweden (1972).Google Scholar
  47. 47.
    A. Lunden, B.-E. Mellander and B. Zhu, Acta Chem. Scand. 45 (1991) 981.Google Scholar
  48. 48.
    L. G. Sillen, Ark. Kemi Mineral Geol. 12A (1937) 1.Google Scholar
  49. 49.
    W. C. Schumb and E. S. Ritter, J. Am. Chem. Soc. 65 (1943) 1055.Google Scholar
  50. 50.
    G. Gattow and Z. Schuetze, Anorg. Allg. Chem. 318 (1962) 176.Google Scholar
  51. 51.
    Idem, ibid. and Z. Schuetze, Anorg. Allg. Chem. 328 (1964) 44.Google Scholar
  52. 52.
    C. N. R. Rao, G. V. Subbarao and S. Ramdas, J. Phys. Chem. 73 (1969) 672.Google Scholar
  53. 53.
    H. A. Harwig, Z. Anorg. Allg. Chem. 444 (1978) 151.Google Scholar
  54. 54.
    H. A. Harwig and J. W. Weenk, ibid. 444 (1978) 111.Google Scholar
  55. 55.
    T. Takahashi (ed.), “High Conductivity Solid Ionic Conductors: Recent Trends and Applications”, (World Scientific, Singapore, 1989) p. 1.Google Scholar
  56. 56.
    P. O. Battle, C. R. A. Catlow, J. W. Heap and L. M. Moroney, J. Solid State Chem. 63 (1986) 8.Google Scholar
  57. 57.
    A. V. Virkar, J. Nachlas, A. V. Joshi and J. Diamond, J. Am. Ceram. Soc. 73 (1990) 3382.Google Scholar
  58. 58.
    K. Z. Fung and A. V. Virkar, ibid. 74 (1991) 1970.Google Scholar
  59. 59.
    A. V. Virkar, J. Electrochem. Soc. 138 (1991) 1481.Google Scholar
  60. 60.
    T. Takahashi, T. Esaka and H. Iwahara. J. Appl. Electrochem. 7 (1977) 299.Google Scholar
  61. 61.
    E. M. Levin and R. S. Roth, J. Res. Nat. Bur. Stand. 68A (1964) 199.Google Scholar
  62. 62.
    T. Takahashi, H. Iwahara and T. Nagai, J. Appl. Electrochem. 2 (1972) 97.Google Scholar
  63. 63.
    P. Conflant, J. C. Boivin and D. Thomas, J. Solid State Chem. 18 (1976) 133.Google Scholar
  64. 64.
    L. G. Sillen and B. Sillen, Z. Phys. Chem. 49B (1944) 27.Google Scholar
  65. 65.
    L. G. Sillen and B. Aurivillius, Z. Krystallogr. 101 (1939) 483.Google Scholar
  66. 66.
    P. Conflant, J. C. Boivin and D. Thomas, J. Solid State Chem. 35 (1980) 192.Google Scholar
  67. 67.
    A. D. Neuimin, L. D. Yushina, Yu. M. Ovchinnikov and S. F. Palguev, in “Transactions of the Institute of Electrochemistry 4”, Urals Academy of Sciences, Electrochemistry of Molten and Solid Electrolytes, Vol. 2 (translated from Russian), edited by M. V. Smirnov (Consultant Bureau, New York, 1964) p. 92.Google Scholar
  68. 68.
    K. Hauffe and H. Peters, Z. Phys. Chem. 201 (1952) 121.Google Scholar
  69. 69.
    T. Takahashi, T. Esaka and H. Iwahara, J. Solid State Chem. 16 (1976) 317.Google Scholar
  70. 70.
    T. Suzuki, Y. Dansui, T. Shirai and C. Tsubaki, J. Mater. Sci. 20 (1985) 3125.Google Scholar
  71. 71.
    H. D. Baek and A. V. Virkar, J. Electrochem. Soc. 138 (1992) 3174.Google Scholar
  72. 72.
    K. Z. Fung, H. D. Baek and A. V. Virkar, Solid State Ionics 52 (1992) 199.Google Scholar
  73. 73.
    M. J. Verkerk and A. J. Burggraaf, J. Appl. Electrochem. 10 (1980) 677.Google Scholar
  74. 74.
    T. Takahashi, H. Iwahara and T. Arao, ibid. 5 (1975) 187.Google Scholar
  75. 75.
    T. Takahashi, T. Esaka and H. Iwahara, ibid. 7 (1977) 299.Google Scholar
  76. 76.
    J. H. W. de Wit, T. Honders and G. H. J. Broers, in “Fast Ion Transport in Solids”, edited by P. Vashishta, J. N. Mundy and G. K. Shenoy (North Holland, Amsterdam, 1979) p. 657.Google Scholar
  77. 77.
    W. N. Lawless and S. L. Swartz, Phys. Rev. B 28 (1983) 2125.Google Scholar
  78. 78.
    C. Wang, X. Xu and B. Li, Solid State Ionics 13 (1983) 135.Google Scholar
  79. 79.
    A. V. Joshi, S. Kulkarni, J. Nachlas, J. Diamond and N. Weber, J. Mater. Sci. 25[2B] (1990) 1237.Google Scholar
  80. 80.
    A. Watanabe and T. Kikuchi, Solid State Ionics 21 (1986) 287.Google Scholar
  81. 81.
    K. Kruidhof, K.J. De Vries and A. J. Burggraaf, ibid. 37 (1990) 213.Google Scholar
  82. 82.
    P. J. Dodor, J. Tanaka and A. Watanabe, ibid. 25 (1987) 177.Google Scholar
  83. 83.
    E. M. Levin and R. S. Roth, J. Res. Nat. Bur. Stand. 68A (1964) 200.Google Scholar
  84. 84.
    R. K. Datta and J. P. Meehan, Z. Anorg. Allg. Chem. 383 (1971) 328.Google Scholar
  85. 85.
    T. Takahashi and H. Iwahara, Mater. Res. Bull. 13 (1978) 1447.Google Scholar
  86. 86.
    A. Watanbe, Solid State Ionics 40–41 (1990) 882.Google Scholar
  87. 87.
    E. M. Levin and R. S. Roth, J. Res. Nat. Bur. Stand. 68A (1964) 197.Google Scholar
  88. 88.
    V. J. POWERS, PhD thesis, Ohio State University (1989).Google Scholar
  89. 89.
    T. Takahashi, H. Iwahara and Y. Nagai, J. Appl. Electrochem. 2 (1972) 97.Google Scholar
  90. 90.
    T. Takahashi and H. Iwahara, ibid. 3 (1973) 65.Google Scholar
  91. 91.
    M. J. Verkerk and A. J. Burggraaf, Solid State Ionics 3–4 (1981) 463.Google Scholar
  92. 92.
    P. Duran, J. R. Jurado, C. Moure, N. Valverde and B. C. H. Steele, Mater. Chem. Phys. 18 (1987) 287.Google Scholar
  93. 93.
    J. R. Jurado, C. Moure, P. Duran and N. Valverde, Solid State Ionics 28–30 (1988) 518.Google Scholar
  94. 94.
    D. Mercurio, M. El Farissi, B. Frit, J. M. Reau and J. Senegas, ibid. 39 (1990) 297.Google Scholar
  95. 95.
    A. WAtanabe, ibid. 35 (1989) 281.Google Scholar
  96. 96.
    T. Takahashi, T. Esaka and H. Iwahara, J. Appl. Electrochem. 5 (1975) 197.Google Scholar
  97. 97.
    P. Su and A. V. Virkar, J. Electrochem. Soc. 139 (1992) 1671.Google Scholar
  98. 98.
    M. J. Verkerk and A. J. Burggraaf, ibid. 128 (1981) 75.Google Scholar
  99. 99.
    S. N. Nasanova, V. Serebennikov and G. A. Narnov, Russ. J. Inorg. Chem. 18 (1973) 1244.Google Scholar
  100. 100.
    M. J. Verkerk, K. Keizer and A. J. Burggraaf, J. Appl Electrochem. 10 (1980) 81.Google Scholar
  101. 101.
    M. J. Verkerk, M. W. J. Hammink and A. J. Burggraaf, J. Electrochem. Soc. 130 (1983) 70.Google Scholar
  102. 102.
    K. Keizer, M. J. Verkerk and A. J. Burggraaf, Ceramurg. Int., 5 (1979) 143.Google Scholar
  103. 103.
    H. Kruidhof, K. Seshan, G. M. H. van de Velde, K. J. de Vries and A. J. Burggraaff, Mater. Res. Bull. 23 (1988) 371.Google Scholar
  104. 104.
    M. Dumelie, G. Nowogrocki and J. C. Boivin, Solid State Ionics 28–30 (1988) 524.Google Scholar
  105. 105.
    I. C. Vinke, J. L. Bakiewicz, B. A. Boukamp, K. J. de Vries and A. J. Burggraaf, ibid. 40–41 (1990) 886.Google Scholar
  106. 106.
    I. C. Vinke, S. Seshan, B. A. Boukamp, K. J. de Vries and A. J. Burggraaf, ibid. 34 (1989) 235.Google Scholar
  107. 107.
    R. D. Shannon, Acta Crystallogr. A32 (1976) 751.Google Scholar
  108. 108.
    H. T. Cahen, T. G. M. van der Belt, J. W. H. de Wit and G. H. J. Broers, Solid State Ionics 1 (1980) 411.Google Scholar
  109. 109.
    A. Watanabe, ibid. 34 (1989) 35.Google Scholar
  110. 110.
    G. Meng, C. Chen, X. Han, P. Yang and D. Peng, ibid. 28–30 (1988) 533.Google Scholar
  111. 111.
    A. V. Virkar and M. R. Plichta, J. Am. Ceram. Soc. 66 (1983) 451.Google Scholar
  112. 112.
    T. C. Yuan and A. V. Virkar, ibid. 69 (1986) C 310.Google Scholar
  113. 113.
    Idem, ibid. and A. V. Virkar, ibid. 71 (1988) 12.Google Scholar
  114. 114.
    D. Drobeck, A. V. Virkar and R. M. Cohen, J. Phys. Chem. Solids 51 (1990) 977.Google Scholar
  115. 115.
    S. J. Kim, Z. C. Chen and A. V. Virkar, J. Am. Ceram. Soc. 71 (1988) C 428.Google Scholar
  116. 116.
    G. Meng, M. Zhou and D. Peng, J. Chin. Silicate Soc. 13 (1985) 366.Google Scholar
  117. 117.
    G. Meng, C. Yu and D. Peng, J. China Univ. Sci. Tech. Suppl. 15 (1985) 225.Google Scholar
  118. 118.
    K. Hu, C. Chen, D. Peng and G. Meng, Solid State Ionics 28–30 (1988) 566.Google Scholar
  119. 119.
    E. M. Levin and T. L. Waring, J. Res. Nat. Bur. Stand. 66A (1962) 451.Google Scholar
  120. 120.
    E. M. Levin and R. S. Roth, ibid. 68A (1964) 202.Google Scholar
  121. 121.
    F. Abraham, M. F. Dubreuille-Gresse, G. Mairesse and G. Nowogrocki, Solid State Ionics 28–30 (1988) 529.Google Scholar
  122. 122.
    T. Takahashi, H. Iwahara and T. Esaka, J. Electrochem. Soc. 124 (1977) 1563.Google Scholar
  123. 123.
    S. N. Hoda and L. L. Y. Chang, J. Am. Ceram. Soc. 57 (1974) 323.Google Scholar
  124. 124.
    E. L. Gal'Perin, L. Ya. Erman, I. K. Kolchin, M. A. Belova and K. S. Chernyshev, Russ. J. Inorg. Chem. 11 (1966) 1137.Google Scholar
  125. 125.
    A. Watanabe, N. Ishizawa and M. Kato, J. Solid State Chem. 60 (1985) 252.Google Scholar
  126. 126.
    T. Takahashi and H. Iwahara, J. Appl Electrochem. 3 (1973) 65.Google Scholar
  127. 127.
    T. Takahashi, T. Esaka and H. Iwahara, ibid. 7 (1977) 31.Google Scholar
  128. 128.
    B. Frit, M. Jaymes, G. Perez and P. Hagenmuller, Rev. Chim. Min. 8 (1971) 453.Google Scholar
  129. 129.
    B. Frit and M. Jaymes, ibid. 9 (1972) 873.Google Scholar
  130. 130.
    L. A. Demina and V. A. Dolgikh, Russ. J. Inorg. Chem. 29 (1984) 547.Google Scholar
  131. 131.
    T. Kikuch, Y. Kitami, M. Yokoyama and H. Sakai, J. Mater. Sci. 24 (1989) 4275.Google Scholar
  132. 132.
    I. Bloom, M. C. Hash, J. P. Zebrowski, K. M. Myles and K. Krumplet, Solid State Ionics 53–56 (1992) 739.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. M. Azad
    • 1
  • S. Larose
    • 1
  • S. A. Akbar
    • 1
  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations