Journal of Materials Science

, Volume 28, Issue 4, pp 1129–1135 | Cite as

Condensation and gelation of inorganic ZrO2-Al2O3 sols

  • Wenbang Zhang
  • F. P. Glasser


The Partial Charge Model has been applied to analyse quantitatively experimental data on the process of hydrolysis and condensation, leading to gelation of Al3+ and Zr4+ cations in acidic concentrated inorganic sols. Both Al3+ and Zr4+ can condense to high polymeric species, but Zr4+ requires a higher ratio of hydrolysis than aluminium to initiate polymerization. Oxolation may occur in both aluminium and zirconium precursors. The role of anions in the polymerization process may also be calculated by this model and is assessed. In mixed Al-Zr gel systems, 27Al nuclear magnetic resonance shows that Al3+ does not participate in the initial polymerization, but instead decomposes to low polymer species upon mixing. Ageing has little effect on the polymerization of Al3+. Calorimetry shows that the polymerization of Zr4+, initiated by aluminium, accelerates at the beginning and gradually slows down after passing through a rate maximum. For mixtures of aluminium and zirconium precursors, temperature, composition (Al/Zr ratio) and concentration can significantly affect the rate of polymerization, as estimated from the rate of heat evolution.


Polymerization Aluminium Hydrolysis Zirconium Nuclear Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Davidge and J. L. Woodhead, UK Pat. 2094 779B, March 1982.Google Scholar
  2. 2.
    C. J. Brinker, D. E. Clark and D. R. Ulrich, in “Better Ceramics Through Chemistry”, MRS Symposia Proceedings, Vol. 73 (Materials Research Society, Pittsburgh, PA, 1986) pp. 820.Google Scholar
  3. 3.
    Idem, ibid., 1988) pp. 900.Google Scholar
  4. 4.
    J. J. Z. Brian, C. J. Brinker, D. E. Clark, and D. R. Ulrich, “, 1990) pp. 1099.Google Scholar
  5. 5.
    R. C. Mehrotra, in “Sol-Gel Science and Technology”, Proceedings of the Winter School on Glasses and Ceramics from Gels, edited by M. A. Aeger, M. Jr. Jafelicci, D. F. Souza and E. E. Zanotto, Sao Carlos (SP), Brazil, August 1989, p. 1.Google Scholar
  6. 6.
    W. B. Zhang and F. P. Glasser, J. Euro. Ceram. Soc., in press.Google Scholar
  7. 7.
    Idem, ibid. Google Scholar
  8. 8.
    J. Livage, and M. Henry, in “Ultrastructure Processing of Advanced Ceramics”, edited by J. D. Mackenzie (Wiley, New York, 1988) p. 183.Google Scholar
  9. 9.
    J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem. 18 (1988) 259.CrossRefGoogle Scholar
  10. 10.
    J. L. Woodhead, J. Mater. Educ. 6 (1984) 887.Google Scholar
  11. 11.
    T. Assih, A. Ayral, M. Abenoza and J. Phalippou, J. Mater. Sci. 23 (1988) 3326.CrossRefGoogle Scholar
  12. 12.
    L. Nazar and L. Klein, J. Amer. Ceram. Soc. 71 (2) (1988) C-85.CrossRefGoogle Scholar
  13. 13.
    L. Nazar, L. C. Klein and D. Napier, in “Better Ceramics Through Chemistry”, MRS Symposia Proceedings, Vol. 121 (Materials Research Society, Pittsburg, PA, 1988) p. 133.Google Scholar
  14. 14.
    R. E. Mesmer, C. F. Base Jr and F. N. Sweeton, in “Proceeding of 32nd International Water Conference”, Pittsburgh PA, 1971, p. 55.Google Scholar
  15. 15.
    G. Johansson, Acta Chem. Scand. 14 (1960) 771.CrossRefGoogle Scholar
  16. 16.
    J. Akitt and A. Farthing, J. Chem. Soc. Dalton Trans. (1980) 1606.Google Scholar
  17. 17.
    Idem, ibid. (1981) 1617.Google Scholar
  18. 18.
    Idem, ibid. (1981) 1624.Google Scholar
  19. 19.
    J. Akitt and J. Mann, J. Magn. Reson. 44 (1981) 584.Google Scholar
  20. 20.
    B. F. Clarles, “Hydrolysis of Cations”, (Wiley Interscience, New York, 1980) pp. 112–22, 152–8.Google Scholar
  21. 21.
    J. Mason, “Multinuclear NMR” (Plenum Press, New York, 1987) p. 259.CrossRefGoogle Scholar
  22. 22.
    K. J. Laidle and J. H. Meiser, “Physical Chemistry” (Benjamin/ Cumming USA, 1982) p. 821.Google Scholar
  23. 23.
    J. Livage, M. Henry, J. P. Jolivet and C. Sanchez, MRS Bull. XVI (1990) 18.CrossRefGoogle Scholar
  24. 24.
    L. Klein, Ann. Rev. Mater. Sci. 15 (1985) 227.CrossRefGoogle Scholar
  25. 25.
    C. J. Brinker, and G. W. Scherer, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing” (Academic Press, San Diego, CA, 1990) p. 331.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Wenbang Zhang
    • 1
  • F. P. Glasser
    • 1
  1. 1.Department of ChemistryUniversity of AberdeenAberdeenUK

Personalised recommendations