Journal of Materials Science

, Volume 28, Issue 4, pp 1113–1119 | Cite as

The catalytic effect of platinum on the oxidation of carbon fibres

  • R. G. Iacocca
  • D. J. Duquette


Ex-PAN based carbon fibres (5C) were oxidized at 500, 550 and 600 °C in dry air while being contained in both silica and platinum specimen holders. The weight loss measurements taken as a function of time revealed that those fibres oxidized in platinum exhibited a much higher oxidation rate than those exposed in silica. Additionally, those fibres oxidized in platinum underwent unusual changes in fibre morphology. “Spheres” formed along the longitudinal axis of many fibres, and in one instance, a fibre underwent bifurcation, with a sphere forming on each remaining fibril. Likewise, severe surface pitting occurred. It is believed that these changes in microstructure combined with the increased oxidation rate are a result of a catalysed oxidation reaction(s) caused by the presence of platinum, or perhaps by a cocatalytic reaction between platinum and impurities found on the surface of the fibres.


Platinum Fibril Carbon Fibre Oxidation Rate Longitudinal Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Saito and H. Ogawa, in 31st International SAMPE Symposium”, Los Angeles, 7–10 April 1986, p. 1647.Google Scholar
  2. 2.
    C. H. Sheppard, in “SAMPE Symposium and Exhibition 23: Application of Materials”, Anaheim 2–4 May (1978), p. 142.Google Scholar
  3. 3.
    B. H. Eckstein, in “18th International SAMPE Conference”, 7–9 October (1986) p. 149.Google Scholar
  4. 4.
    J. B. Barr and B. H. Eckstein, in “Extended Abstract of the 18th Biennial Conference on Carbon”, Worcester, MA, 1987.Google Scholar
  5. 5.
    Paul E. McMahon, in “SAMPE Symposium and Exhibition 23: Application of Materials”, 2–4 May 1978, p. 150.Google Scholar
  6. 6.
    E. A. Heintz and W. E. Parker, Carbon 4 (1966) 473.CrossRefGoogle Scholar
  7. 7.
    J. T. Gallagher and H. Harker, Carbon 2 (1964).Google Scholar
  8. 8.
    P. L. Walker Jr, Frank Rusinko Jr, and L. G. Austin, Adv. Catal. XI, (1959) 133.Google Scholar
  9. 9.
    G. R. Hennig, in “Chemistry and Physics of Carbon”, P. L. Walker, ed. (Marcel Dekker, New York, 1966) pp. 1–49.Google Scholar
  10. 10.
    H. Harker, in “Proceedings of the Fourth Carbon Conference” (Pergamon Press, Oxford. 1960) pp. 125–39.Google Scholar
  11. 11.
    G. B. Taylor et al., J. Phys. Chem. 34 (1930) 748.CrossRefGoogle Scholar
  12. 12.
    A. F. Benton and R. T. J. Bell, J. Amer. Chem. Soc. 56 (1934) 501CrossRefGoogle Scholar
  13. 13.
    D. J. Thorne, in “Handbook of Composites: Vol. 1, Strong Fibers”, edited by W. Watt and B. V. Perov (Elsevier, London; 1985) Ch. XII.Google Scholar
  14. 14.
    K. K. Chawla, “Composite Materials”, (Springer-Verlag, Berlin, 1987) pp. 21–3.CrossRefGoogle Scholar
  15. 15.
    M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain and H. A. Goldberg, “Graphite Fibers and Filaments”, (Springer-Verlag, Berlin, 1988) pp. 14–16.CrossRefGoogle Scholar
  16. 16.
    D. J. Johnson, in “Chemistry and Physics of Carbon”, Vol. 20, edited by P. A. Thrower (Marcel Dekker, New York, 1987) p. 1.Google Scholar
  17. 17.
    B. L. Butler and R. J. Diefendorf, in “Papers of the 9th Conference on Carbon”, Boston, MA (American Carbon Society, University Park, PA, 1969) p. 45.Google Scholar
  18. 18.
    B. J. Wicks and R. A. Coyle, J. Mater. Sci. 11 (1976) 376.CrossRefGoogle Scholar
  19. 19.
    W. Watt and W. Johnson, Appl. Polm. Symp. 9 (1969) 215.Google Scholar
  20. 20.
    R. H. Knibbs, J. Microsc. 94 (1971) 273.CrossRefGoogle Scholar
  21. 21.
    A. Fourdeux, R. Perret, and R. Ruland, in “Proceedings of the International Conference on Carbon Fibers, Their Composites, and Applications”, Plastics and Polymer Conference Supplement 5 (The Plastics Institute, London, 1971) p. 57.Google Scholar
  22. 22.
    M. Guigon, A. Oberlin and G. Desarmot, Fibre Sci. Technol. 20 (1984) 55.CrossRefGoogle Scholar
  23. 23.
    F. J. Long and K. W. Sykes, Proc. Roy. Soc. A215 (1952) 100.Google Scholar
  24. 24.
    Idem, J. Chem. Phys. 47 (1950) 361.Google Scholar
  25. 25.
    N. R. Laine, F. J. Vistola and P. L. Walker, J. Phys. Chem. 67 (1963) 2030.CrossRefGoogle Scholar
  26. 26.
    M. I. Kobozev, Acta Physico Chim. URSS 21 (1946) 294.Google Scholar
  27. 27.
    K. Frischknecht, Masters Thesis, Rensselaer Polytechnic Institute (1990).Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • R. G. Iacocca
    • 1
  • D. J. Duquette
    • 1
  1. 1.Department of Materials EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations