Advertisement

Journal of Materials Science

, Volume 28, Issue 4, pp 1107–1112 | Cite as

Morphology of compacted polyethylene fibres

  • R. H. Olley
  • D. C. Bassett
  • P. J. Hine
  • I. M. Ward
Papers

Abstract

The microstructure of aggregates of parallel high-modulus polyethylene fibres, compacted at 138°C to give a composite with good mechanical properties, has been examined. Detail of transverse and longitudinal cross-sections has been revealed by permanganic etching and studied electron microscopically. The fibres pack together irregularly with coordination numbers typically between 4 and 7 and fibre diameters in the range 10–20 μm. Misalignment of fibres is generally close to zero but does occur incrementally, by 10° and more, between successive rows of fibres. A substantial proportion of fibres has deformed, often by shear, during treatment producing a broadening of interfibrillar contacts. A lamellar component of texture is present both between and within fibres. It is inferred to form by melting of those parts of the fibres where there is least constraint on the melt, followed by recrystallization on the fibres as nuclei. The lamellae therefore share the axial orientation of the fibres, while the crystallographic fibre/lamellar contact promotes good transverse properties.

Keywords

Polymer Microstructure Mechanical Property Polyethylene Recrystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Hine, I. M. Ward, R. H. Olley and D. C. Bassett, J. Mater. Sci. 28 (1993) 0000.CrossRefGoogle Scholar
  2. 2.
    R. H. Olley and D. C. Bassett, Polymer 23 (1982) 1707.CrossRefGoogle Scholar
  3. 3.
    J. H. M. Willison and A. J. Rowe, “Replica, Shadowing and Freeze-Etching Techniques” (North Holland, Amsterdam, 1980).Google Scholar
  4. 4.
    D. C. Bassett, A. M. Hodge and R. H. Olley, Proc. Roy. Soc. A 377 (1981) 39.CrossRefGoogle Scholar
  5. 5.
    J. D. Hoffmann, G. S. Frolen, G. S. Ross and J. I. Lauritzen, J. Res. Nat. Bur. Stand. A 79 (1975) 761.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • R. H. Olley
    • 1
  • D. C. Bassett
    • 1
  • P. J. Hine
    • 2
  • I. M. Ward
    • 2
  1. 1.J.J.Thomson Physical LaboratoryUniversity of ReadingWhiteknights, ReadingUK
  2. 2.Interdisciplinary Research Centre in Polymer Science and TechnologyUniversity of LeedsLeedsUK

Personalised recommendations