Journal of Materials Science

, Volume 28, Issue 4, pp 1090–1096 | Cite as

Determination of the mechanical properties of amorphous Ni-Cr-P alloys

  • A. Wolfenden
  • S. K. R. Kondlapudi


The mechanical properties of Ni(80-x) Cr(x) P(20) amorphous alloys (with x=0–40 at % in steps of 5 at %), produced by melt spinning, have been determined. The amorphous nature of the alloys was confirmed by X-ray diffraction. Differential scanning calorimetry showed that the crystallization temperatures increased with increasing chromium content. Microhardness measurements, made on both the wheel and free sides of the as-cast ribbons, revealed the presence of a gradient in hardness through the thickness of the specimens. Dynamic Young's modulus was measured with the piezoelectric ultrasonic composite oscillator technique and tensile fracture strengths were determined by uniaxial tensile testing of selected ribbons. Correlations were developed among the various properties to gain an insight into the structure/properties relations for these materials.


Crystallization Chromium Differential Scanning Calorimetry Calorimetry Crystallization Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. R. Anantharaman, “Metallic Glasses — Production, Properties and Applications” (Transtech Publications, Switzerland, 1984) p. 8.CrossRefGoogle Scholar
  2. 2.
    D. E. Polk and B. C. Giessen, in “Metallic Glasses” (eds.) J. J. Gilman and H. J. Leamy (American Society for Metals, Metals Park, OH, 1978) p. 19.Google Scholar
  3. 3.
    H. S. Chen and K. A. Jackson, “, p. 78.Google Scholar
  4. 4.
    M. F. Ashby, A. F. Nelson and R. M. A. Centamore, Scripta Metall. 4 (1970) 715.CrossRefGoogle Scholar
  5. 5.
    J. Logan and M. F. Ashby, Acta Metall 22 (1974) 1047.CrossRefGoogle Scholar
  6. 6.
    L. A. Davis, R. Ray, C. P. Chou and R. C. O'Handley, Scripta Metall. 10 (1976) 541.CrossRefGoogle Scholar
  7. 7.
    H. S. Chen, J. T. Krause and E. Coleman, J. Non Cryst. Solids 18 (1975) 151.CrossRefGoogle Scholar
  8. 8.
    T. Masumoto and R. Maddin, Mater. Sci. Engng 19 (1975) 1.CrossRefGoogle Scholar
  9. 9.
    W. Jingtang, P. Dexing, S. Qihung and D. Bingzhe, ibid. 98 (1988) 535.CrossRefGoogle Scholar
  10. 10.
    K. W. Rhie, P. Rong, D. G. Naugle, S. J. Harbert, A. Wolfenden, A. Clearfield and T. O. Callaway, J. Mater. Sci. Lett. 7 (1988) 839.CrossRefGoogle Scholar
  11. 11.
    R. B. Griffin, A. Wolfenden, D. G. Naugle, D. L. Cocke and R. E. White, in “Materials Architecture” Proceedings of the 10th Riso International Symposium on Metallurgy and Materials Science, (eds.) J. B. Blide-Sorensen, N. Hansen, D. Jnul Jensen, T. Leffers, H. Lilholt and O. B. Pedersen, p. 357.Google Scholar
  12. 12.
    A. Wolfenden, Metall. Trans. 11A (1980) 1233.CrossRefGoogle Scholar
  13. 13.
    N. Naka, S. Tomizawa, T. Masumoto and T. Watanabe, “Rapidly Quenched Metals” (MIT Press, London, 1976) p. 273.Google Scholar
  14. 14.
    H. S. Chen, J. T. Krause, A. Inoue and T. Masumoto, Scripta Metall. 17 (1983) 1413.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • A. Wolfenden
    • 1
  • S. K. R. Kondlapudi
    • 1
  1. 1.Advanced Matehals Laboratory, Mechanical Engineering DepartmentTexas A and M UniversityCollege StationUSA

Personalised recommendations