Advertisement

Journal of Materials Science

, Volume 28, Issue 4, pp 1074–1080 | Cite as

The role of elastic property mismatch in the failure of ceramic composites

  • Jow -Lay Huang
  • Ching -Jang Lin
Papers

Abstract

Numerical analysis was undertaken to simulate a modification of the normalized stress-intensity factor applicable when the crack tip is in the vicinity of an interface separating materials of differing elastic properties. It is predicted that when the initial crack is subcritically extended to the interface, the strength of the sample is greater than if the failure occurred from the initial crack, without arrest at the interface. The fracture behaviour of microcracking on a polished WC/Si3N4 sample was examined. Crack branching, deviation and arrest were observed to depend on the instantly released energy.

Keywords

Polymer Elastic Property Material Processing Fracture Behaviour Initial Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sergej T. Bujan and G. J. Baldoni, Ceram. Bull. 66 (1987) 347.Google Scholar
  2. 2.
    K. R. Karasak, M. R. Martin, G. C. Yen and J. L. Schienle, J. Amer. Ceram. Soc. 72 (1989) 628.CrossRefGoogle Scholar
  3. 3.
    Ramakrishnan T. Bhatt, Ceram. Engng Sci. Proc. 11 (1990) 974.CrossRefGoogle Scholar
  4. 4.
    J. Tirosh and A. S. Tetelman, Int. J. Fract. 12 (1976) 187.CrossRefGoogle Scholar
  5. 5.
    D. J. Green and P. S. Nicholson, in “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) pp. 945–60.Google Scholar
  6. 6.
    R. W. Davidge and T. J. Green, J. Mater. Sci. 3 (1968) 629.CrossRefGoogle Scholar
  7. 7.
    F. Erdogan and T. S. Cook, Int. J. Fract. 10 (1974) 629.Google Scholar
  8. 8.
    A. V. Virkar and M. R. Plichta, J. Amer. Ceram. Soc. 66 (1983) 451.CrossRefGoogle Scholar
  9. 9.
    W. B. Hillia and R. J. Charles, in “High Strength Materials”, edited by V. F. Zackay (Wiley, New York, 1964) pp. 682–701.Google Scholar
  10. 10.
    N. F. Mott, Engineering 165 (1948) 16.Google Scholar
  11. 11.
    J. P. Berry, J. Mech. Phys. Solids 8 (1960) 207.CrossRefGoogle Scholar
  12. 12.
    J. P. Singh, J. Amer. Ceram. Soc. 62 (1979) 179.CrossRefGoogle Scholar
  13. 13.
    F. Erdogan and G. D. Gupta, Int. J. Fract. 11 (1975) 13.CrossRefGoogle Scholar
  14. 14.
    F. Erdogan and V. Biricikoglu, Int. J. Engng Sci. 11 (1973) 745.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Jow -Lay Huang
    • 1
  • Ching -Jang Lin
    • 1
  1. 1.Department of Materials EngineeringNational Cheng-Kung UniversityTainanTaiwan

Personalised recommendations