Advertisement

Journal of Materials Science

, Volume 28, Issue 4, pp 1059–1066 | Cite as

The influence of fibre surface treatment on the formation of an interphase in CFRP

  • P. W. M. Peters
  • H. Albertsen
Papers

Abstract

In the scheme of a EURAM programme the influence of a wet oxidative surface treatment on the formation of an interphase, on the fibre-matrix bond strength and on the mechanical properties is investigated. The fibre CG 43–750 was supplied by Courtaulds treated to four different surface treatment levels (designated STL=0% or untreated, 10, 50 and 100%) sized (1% by weight) and impregnated with the resin HG 9106. This resin consists of di-, tri- and tetrafunctional epoxies with the hardener 3.3 DDS and also contains polyethersulphone. During the cure this resin separates in a continuous (thermoset-rich) phase which completely covers the fibres and a discontinuous (thermoplastic-rich) phase with a roughly globular structure. From water uptake experiments and matrix (interphase) sensitive composite properties (shear modulus G12, transverse modulus E22) it was concluded that the activated carbon fibre surface gives rise to a more fully crosslinked interphase, resulting in a reduction of the modulus of this interphase.

Keywords

Epoxy Activate Carbon Shear Modulus Bond Strength Carbon Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Williams, M. E. Donnelan, M. R. James and W. J. Morris, Mater. Sci. Engng. A 126 (1990) 305.CrossRefGoogle Scholar
  2. 2.
    K. Jayaraman and K. L. Reifsnider, J. Compos. Mater. 26 (1992) 770.CrossRefGoogle Scholar
  3. 3.
    J. Jayaraman, Z. Gao and K. L. Reifsnider, in Proceedings of 6th Technical Conference of American Society for Composites (1991) pp. 759–768.Google Scholar
  4. 4.
    P. W. M. Peters, J. Compos. Mater. to be published.Google Scholar
  5. 5.
    D. J. Blundell, R. A. Crick, B. Fife, J. Peacock, A. Keller and A. Waddon, J. Mater. Sci. 24 (1989) 2057.CrossRefGoogle Scholar
  6. 6.
    Annual Book of ASTM standards, Part 35, ASTM Standard D 790-81 (1991).Google Scholar
  7. 7.
    P. W. M. Peters and G. S. Springer, J. Compos. Mater., 21, (1987) 157.CrossRefGoogle Scholar
  8. 8.
    C. C. Chamis and J. H. Sinclair, Exper. Mech. 17 (1977) 339.CrossRefGoogle Scholar
  9. 9.
    A. F. Margolis, SPE J. 27, (June 1971).Google Scholar
  10. 10.
    A. Noordam, J. J. M. H. Wintraecken and G. Walton, in Proc. 9th. Disc. Conf. Prague, July 14–17, 1986, 373–389.Google Scholar
  11. 11.
    V. da sa Costa, R. Robinson, M. Desaeger and B. Charalambides, To be published.Google Scholar
  12. 12.
    H. Albertsen and P. W. M. Peters, to be published.Google Scholar
  13. 13.
    C. C. Chamis, J. Comp. Techn. Res., 11 (1989) 3.CrossRefGoogle Scholar
  14. 14.
    M. S. Madhukar and L. T. Drzal, J. Compos. Mater., 25 (1991) 932.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • P. W. M. Peters
    • 1
  • H. Albertsen
    • 1
  1. 1.Institut für Werkstoff-ForschungDLRKöln 90Germany

Personalised recommendations