Advertisement

Journal of Materials Science

, Volume 28, Issue 4, pp 1031–1036 | Cite as

Patterns of stress-induced phase transformation in MgO-stabilized zirconia ceramic revealed using micro-Raman imaging

  • M. Bowden
  • G. D. Dickson
  • D. J. Gardiner
  • D. J. Wood
Papers

Abstract

An automated Raman microscope system has been used to collect mapped Raman data from a Goodfellow 3% MgO stabilized zirconia ceramic tile. The data have been transformed to produce images which show the relative concentrations and distributions of the monoclinic and tetragonal phases in the mapped areas. The images reveal concentrations of the monoclinic phase at grain boundaries. Regions surrounding indents in the tile created with a Vickers hardness tester, were also mapped to reveal the extent and pattern of stress-induced phase transformation. A Raman map was also generated from an area before and after indentation. Comparison of the Raman images with the optical white light images reveals a relationship between the pattern of grain boundaries on the sample and the distribution of transformed material.

Keywords

Polymer Zirconia Material Processing Relative Concentration Vickers Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Garvie, in “High Temperature Oxides, Part II” (Academic Press, New York, 1970) p. 118.Google Scholar
  2. 2.
    J. D. McCullough and K. N. Trueblood, Acta Crystallogr. 12 (1959) 507.CrossRefGoogle Scholar
  3. 3.
    D. K. Smith and H. W. Newkirk, ibid. 18 (1965) 983.CrossRefGoogle Scholar
  4. 4.
    G. Teufer, ibid. 15 (1962) 1187.CrossRefGoogle Scholar
  5. 5.
    G. M. Wolten, ibid. 17 (1964) 763.CrossRefGoogle Scholar
  6. 6.
    Idem. J. Amer. Ceram. Soc. 46 (1963) 418.CrossRefGoogle Scholar
  7. 7.
    B. C. Weber, Aerospace Research Laboratories Report ARL-64-205 (1964).Google Scholar
  8. 8.
    G. Katagiri, H. Ishida, A. Ishitani and T. Masaki, Adv. Ceram. 24 (1988) 537.Google Scholar
  9. 9.
    T. Arahori, T. Shigematsu and H. Yoshinaga, Sumitomo Search 36 (1988) 97.Google Scholar
  10. 10.
    T. Arahori, T. Suzuki, N. Iwamoto and N. Umesaki, Adv. Ceram. 24 (1988) 549.Google Scholar
  11. 11.
    D. R. Clarke and F. Adar, J. Amer. Ceram. Soc. 65 (1982) 284.CrossRefGoogle Scholar
  12. 12.
    M. Ishitsuka, T. Sato, T. Endo, M. Shimada and H. Arashi, J. Mater. Sci. Lett. 8 (1989) 638.CrossRefGoogle Scholar
  13. 13.
    R. H. Dauskardt, D. K. Veirs and R. O. Ritchie, J. Amer. Ceram. Soc. 72 (1989) 1124.CrossRefGoogle Scholar
  14. 14.
    S. Kudo, J. Mizuno and H. Hasegawa, Adv. Ceram. 24 (1988) 103.Google Scholar
  15. 15.
    M. Bowden, G. D. Dickson, D. J. Gardiner and D. Wood, Appl. Spectrosc. 44 (1990) 1679.CrossRefGoogle Scholar
  16. 16.
    F. J. Bergin and C. G. Shelton, in “Proceedings of the IXth International Conference on Raman Spectroscopy”, London 1988, edited by R. J. H. Clark and D. A. Long (Wiley, New York, 1988), p. 445.Google Scholar
  17. 17.
    O. Ohtaka and S. Kume, J. Amer. Ceram. Soc. 71 (1988) C164.Google Scholar
  18. 18.
    A. Ishitani, G. Katagiri, H. Ishida and T. Masaki, Microbeam Anal. (1988) 169.Google Scholar
  19. 19.
    E. D. Whitney, Trans. Faraday Soc. 61 (1965) 1991.CrossRefGoogle Scholar
  20. 20.
    J. Adams and B. Cox, J. Nucl. Energy Part A 11 (1959) 31.Google Scholar
  21. 21.
    R. C. Garvie and P. S. Nicholson, J. Amer. Ceram. Soc. 55 (1972) 303.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • M. Bowden
    • 1
  • G. D. Dickson
    • 1
  • D. J. Gardiner
    • 1
  • D. J. Wood
    • 2
  1. 1.Department of Chemical and Life SciencesUniversity of NorthumbriaNewcastle upon TyneUK
  2. 2.Woolwich, LondonUK

Personalised recommendations