Advertisement

Journal of Materials Science

, Volume 28, Issue 4, pp 1019–1030 | Cite as

Precursor film of tin-based active solder wetting on ceramics

  • Ai -Ping Xian
Papers

Abstract

The phenomenon of the precursor film in a metal-ceramics wetting system was investigated using tin-based active solder (active element: Ti, Zr, Nb, V, Hf or Ta, the third element Ni, Cu, Ag, In or Al) wetting on the ceramics (sialon, mullite, barium titanate alumina and ZTA-SiC). The results show that the formation of a precursor film in the wetting system is dependent on the following factors. (1) The active metal: the presence of titanium, zirconium or hafnium in the solders induced the formation of a precursor film, but niobium, vanadium and tantalum did not. (2) Temperature: a precursor film will not form unless the critical wetting temperature is reached, while a weak film will form during a second wetting at higher temperature. (3) Ceramics: under the same wetting conditions for Sn-4Ti solder, a precursor film forms on the surface of sialon, ZTA-SiC, and red alumina, but not on white alumina, mullite or barium titanate. (4) The third element; small amounts of nickel (1–3 at %), copper (5 at %), or silver (5 at %) in Sn-5 at % Ti solder will enhance the precursor film. On the other hand, small amounts of Al (5 at %) will completely inhibit the occurrence of precursor film. SEM observation reveals the precursor film to be mainly composed of a continuous film with segregated active metal and some small tin islands on the film. Its thickness is several micrometres, similar to that of the interfacial reaction layer between the solder and the ceramic. Two early theories for the formation of a precursor film, surface diffusion and evaporation-condensation, cannot explain the above phenomenon very well. A new model of rapid absorption then film overflow is proposed here for the first time and some problems with the model are also discussed.

Keywords

Vanadium Niobium Tantalum Hafnium Active Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Moorhead, Weld J. 62 (1983) 17.Google Scholar
  2. 2.
    A. J. Moorhead and H. Keating, ibid. 65 (1986) 17.Google Scholar
  3. 3.
    H. Mizuhara and K. Mally, ibid. 64 (1985) 27.Google Scholar
  4. 4.
    H. Mizuhara, US Pat. 4591 535 (1986).Google Scholar
  5. 5.
    M. G. Nicholas, T. M. Valentine and M. J. Waite, J. Mater. Sci. 15 (1980) 2197.CrossRefGoogle Scholar
  6. 6.
    M. G. Nicholas and T. M. Valentine. GB Pat. 2066 291A (1981).Google Scholar
  7. 7.
    R. R. Kapoor and T. W. Eagar, Metall. Trans. 20B (1989) 919.CrossRefGoogle Scholar
  8. 8.
    Idem, J. Amer. Ceram. Soc. 72 (1989) 448.CrossRefGoogle Scholar
  9. 9.
    A. P. Xian and Z. Y. Si, J. Mater. Sci. 25 (1990) 4483.CrossRefGoogle Scholar
  10. 10.
    A. P. Xian, X. M. Xue and Z. Y. Si, J. Mater. Sci. Lett. 10 (1991) 246.CrossRefGoogle Scholar
  11. 11.
    J. V. Naidich, Prog. Surf. Membr. Sci. 14 (1981) 353.CrossRefGoogle Scholar
  12. 12.
    F. Delannay, L. Froyen and A. Deruyttere, J. Mater. Sci. 22 (1987) 1.CrossRefGoogle Scholar
  13. 13.
    P. G. de Gennes, Rev. Mod. Phys. 57 (1985) 827.CrossRefGoogle Scholar
  14. 14.
    G. Tammann and F. Arnstz, Z. Anorg. Allgem. Chem. 192 (1930) 45.CrossRefGoogle Scholar
  15. 15.
    G. Tammann and A. Ruhenbeck, ibid. 223 (1935) 192.CrossRefGoogle Scholar
  16. 16.
    G. L. J. Bailey and H. C. Watkins, J. Inst. Metals 80 (1951/52) 57.Google Scholar
  17. 17.
    W. Hardy, Philos. Mag. 38 (1919) 49.CrossRefGoogle Scholar
  18. 18.
    D. Bangham and S. Saweris, Trans. Faraday Soc. 34 (1938) 554.CrossRefGoogle Scholar
  19. 19.
    H. Ghiradella, W. Radigan, H. L. Frisch, J. Coll. Interface. 51 (1975) 522.CrossRefGoogle Scholar
  20. 20.
    A. P. Xian, PhD dissertation, Institute of Metal Research, Academia Sinica, Shenyang 110015, China (1991).Google Scholar
  21. 21.
    A. P. Xian and Z. Y. Si, J. Mater. Sci. Lett. 10 (1991) 1315.CrossRefGoogle Scholar
  22. 22.
    L. P. Huang, Z. K. Huang, X. L. Xu and X. L. Fu, Acta Inorg. Mater. Sinica 1 (1986) 123 (in Chinese).Google Scholar
  23. 23.
    A. P. Xian, J. Mater. Sci. submitted.Google Scholar
  24. 24.
    Y. S. Yi, X. M. Qiu and H. Y. Wang, in “Proceedings of Sixth Conference of Welding in China”, Vol. 1, edited by Z. Y. Si (Xian, China, 1990) pp. 12, 21 (in Chinese).Google Scholar
  25. 25.
    D. Fong, “Metal Physics”, Vol. 1, edited by D. Fong (Science Press, Beijing, 1987) in Chinese.Google Scholar
  26. 26.
    E. Hondros and M. P. Seah, Int. Met. Rev. 22 (1977) 262.CrossRefGoogle Scholar
  27. 27.
    V. E. Dussan and S. Davis, J. Fluid. Mech. 65 (1974) 71.CrossRefGoogle Scholar
  28. 28.
    A. P. Xian and Z. Y. Si, Chin. J. Met. Sci. Technol. 6 (1990) 182.Google Scholar
  29. 29.
    I. A. Aksay, C. E. Hoge and J. A. Pask, J. Phys. Chem. 78 (1974) 1178.CrossRefGoogle Scholar
  30. 30.
    A. Bondy, Chem. Rev. 52 (1953) 417.CrossRefGoogle Scholar
  31. 31.
    A. P. Xian and Z. Y. Si, Comput. Appl. Chem. 8 (1991) 232 (in Chinese).Google Scholar
  32. 32.
    Idem, Acta Metall. Sinica (Engl. Ed.) B3 (3) (1990) 207.Google Scholar
  33. 33.
    M. Naka, T. Tanaka, I. Okamoto and Y. Arata, Trans. JWRI 12 (2) (1983) 337.Google Scholar
  34. 34.
    N. Iwamoto, Y. Makino and H. Miyata, ibid. 15 (1) (1986) 55.Google Scholar
  35. 35.
    A. P. Xian and Z. Y. Si, J. Mater. Sci. Lett. 10 (1991) 1381.CrossRefGoogle Scholar
  36. 36.
    Idem, J. Mater. Sci. 27 (1992) 1560.CrossRefGoogle Scholar
  37. 37.
    M. Howard, EP Pat. 0104 623 A2 (1984).Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Ai -Ping Xian
    • 1
  1. 1.International Centre for Materials Physics, Institute of Metal ResearchAcademia SinicaShenyangPeople’s Republic of China

Personalised recommendations