Advertisement

Journal of Materials Science

, Volume 28, Issue 4, pp 982–988 | Cite as

Disordering of the Ni3Si intermetallic compound by mechanical milling

  • J. S. C. Jang
  • C. H. Tsau
Papers

Abstract

The ordered f c c intermetallic compound Ni3Si was mechanically milled in a high-energy ball mill. The severe plastic deformation produced by milling induced transformations with increasing milling time as follows: ordered f c c → disordered f c c → nanocrystalline f c c. The structural and microstructural evolution with milling time was followed by X-ray diffraction, TEM, hardness tests, and differential scanning calorimetry (DSC). Complete disordering occurred at milling times of 2 h and kept the saturated ΔH of the DSC peak in the range of estimated enthalpy even after 60 h milling. The structural development during milling of the f c c solid solution for Ni3Si was presumably dominated by the formation and refinement of a dislocation cell structure into microcrystallites which eventually reached nanometre dimensions.

Keywords

Enthalpy Differential Scanning Calorimetry Milling Intermetallic Compound Ball Mill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. L. Johnson, Prog. Mater. Sci. 30 (1986) 81.CrossRefGoogle Scholar
  2. 2.
    W. L. Johnson and H. J. Fecht, J. Less-Common Metals 145 (1988) 63.CrossRefGoogle Scholar
  3. 3.
    C. C. Koch, O. B. Cavin, C. G. McKamey and J. O. Scarbrough, Appl. Phys. Lett. 43 (1983) 1017.CrossRefGoogle Scholar
  4. 4.
    R. B. Schwarz, R. R. Petrich and C. K. Saw, J. Non-Cryst. Solids 76 (1985) 281.CrossRefGoogle Scholar
  5. 5.
    A. E. Ermakov, E. E. Yurchikov and V. A. Barinov, Fiz. Metal. Metall. 52 (1981).Google Scholar
  6. 6.
    R. B. Schwarz and C. C. Koch, Appl. Phys. Lett. 49 (1986) 146.CrossRefGoogle Scholar
  7. 7.
    E. Hellstern and L. Schultz, ibid. 48 (1986) 124.CrossRefGoogle Scholar
  8. 8.
    R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett. 51 (1983) 415.CrossRefGoogle Scholar
  9. 9.
    P. D. Askenazy, E. A. Kamenetzky, L. E. Tanner and W. L. Johnson, J. Less-Common Metals 140 (1988) 149.CrossRefGoogle Scholar
  10. 10.
    J. S. C. Jang and C. C. Koch, J. Mater. Res. 5 (1989) 498.CrossRefGoogle Scholar
  11. 11.
    B. D. Cullity, “Elements of X-ray Diffraction” (Addison-Wesley, London, 1978) p. 386.Google Scholar
  12. 12.
    N. S. Stoloff and R. G. Davies, Prog. Mater. Sci. 13 (1966) 3.Google Scholar
  13. 13.
    L. Kaufman, CALPHAD 3 (1979) 45.CrossRefGoogle Scholar
  14. 14.
    D. E. Luzzi and M. Meshii, Res. Mechanica 21 (1987) 207.Google Scholar
  15. 15.
    L. Kaufman and H. Bernstein, in “Computer Calculation of Phase Diagrams” (Academic Press, New York, 1970) Ch. 11.Google Scholar
  16. 16.
    A. R. Miedema, Philips Tech. Rev. 36 (1976) 217.Google Scholar
  17. 17.
    M. S. Daw and M. I. Baskes, Phys. Rev. B29 (1984) 6443.CrossRefGoogle Scholar
  18. 18.
    R. C. Weast, (ed.) “CRC Handbook of Chemistry and Physics” 65th Edn (CRC, Boca Raton, 1985) p. D-43.Google Scholar
  19. 19.
    D. Turnbull, J. Appl. Phys. 21 (1950) 1122.Google Scholar
  20. 20.
    A. W. Weeber, J. Phys. F17 (1987) 809.CrossRefGoogle Scholar
  21. 21.
    K. H. J. Buschow, J. Appl. Phys. 56 (1984) 15.CrossRefGoogle Scholar
  22. 22.
    S. Veprek, Z. Iqbal and F. A. Sarott, Phil. Mag. B45 (1982) 137.CrossRefGoogle Scholar
  23. 23.
    C. C. Koch, in the workshop on “Fabrication Technologies and Applications of The High-Temperature Intermetallic Compounds”, 16 May 1991 (Materials Research Laboratories, ITRI, Hsinchu, Taiwan) p. 1–1.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • J. S. C. Jang
    • 1
  • C. H. Tsau
    • 1
  1. 1.Materials Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations