Journal of Materials Science

, Volume 28, Issue 4, pp 975–981 | Cite as

Mössbauer spectroscopic studies of the crystallization of amorphous Fe80B20−xSix (x=0, 2, and 8) alloys

  • R. Singhal
  • U. C. Johri
  • R. M. Singru


The crystallization process of amorphous Fe80B20−xSix (x=0, 2, and 8) ferromagnetic alloys has been studied by using 57Fe Mössbauer spectroscopy and X-ray diffraction studies. Results for samples heat treated at different temperatures for different times show that the crystallization of Fe80B20−xSi x samples having x=0 and 2 leads to α-Fe and t-Fe3B, while for x=8, it leads to α-Fe, t-Fe2B, and perhaps Fe-Si. It is further observed that the addition of silicon to the Fe-B system improves the thermal stability of the system.


Polymer Spectroscopy Silicon Crystallization Thermal Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kemény, I. Vincze, B. Fogarassy and Sigurds Aarajs, Phys. Rev. B 20 (1979) 476.CrossRefGoogle Scholar
  2. 2.
    A. S. Schaafsma, H. Snijders, F. van der Woude, J. W. Drijver and S. Radelaar, ibid. 20 (1979) 4423.CrossRefGoogle Scholar
  3. 3.
    M. W. Ruckman, R. A. Levy, A. Kessler and R. Hasegawa, J. Non-Cryst. Solids 40 (1980) 393.CrossRefGoogle Scholar
  4. 4.
    H. N. Ok and A. H. Morrish, Phys. Rev. B 22 (1980) 3471.CrossRefGoogle Scholar
  5. 5.
    J. A. Cusidó A. Isalgué, and J. Tejada, Phys. Status Solidi A87 (1985) 169.CrossRefGoogle Scholar
  6. 6.
    H. N. Ok and A. H. Morrish, J. Phys. 11 (1981) 1495.CrossRefGoogle Scholar
  7. 7.
    H. N. Ok, K. S. Baek, and C. S. Kim, Phys. Rev. B 24 (1981) 6600.CrossRefGoogle Scholar
  8. 8.
    I. W. Donald, T. Kemény, and H. A. Davies, J. Phys. F 11 (1981) L31.CrossRefGoogle Scholar
  9. 9.
    T. Masumoto, H. Kimura, A. Inoue, and Y. Waseda, Mater Sci. Engng 23 (1976) 141.CrossRefGoogle Scholar
  10. 10.
    Anil K. Bhatnagar and N. Ravi, Phys. Rev. B 28 (1983) 359.CrossRefGoogle Scholar
  11. 11.
    T. Nagarajan, U. Chidambaram Asari, S. Srinivasan, V. Sridharan and A. Narayanasamy, Mater. Sci. Engng. 97 (1988) 355.CrossRefGoogle Scholar
  12. 12.
    Gheorehe Ilonca and Viorel Florescu, ibid., 99 (1988) 43.CrossRefGoogle Scholar
  13. 13.
    I. Nowik, I. Felner, Y. Wolfus, and Y. Yeshurun, J. Phys. F 18 (1988) L181.CrossRefGoogle Scholar
  14. 14.
    Rita Singhal and A. K. Majumdar, Phys. Rev. B 44 (1991) 2673.CrossRefGoogle Scholar
  15. 15.
    Rita Singhal, PhD thesis, Indian Institute of Technology, Kanpur (1991), unpublished.Google Scholar
  16. 16.
    L. R. Walker, G. K. Wertheim and V. Jaccarino, Phys. Rev. Lett. 6 (1961) 98.CrossRefGoogle Scholar
  17. 17.
    M. Taniwaki and M. Maeda, Mater. Sci. Engng. 99 (1988) 47.CrossRefGoogle Scholar
  18. 18.
    U. Gonser, M. Ghafari, M. Ackermann, H. P. Klein, J. Bauer, and H. -G. Wagner, in “Proceedings of the 4th International Conference on Rapidly Quenched Metals,” edited by T. Masumoto and K. Sujuki (The Japan Institute of Metals, Sendai, 1982) p.639.Google Scholar
  19. 19.
    G. le Caer and J. M. Dubois, Phys. Status Solidi A64 (1981) 275.CrossRefGoogle Scholar
  20. 20.
    F. H. Sánchez, Y. D. Zhang, J. I. Budnick and R. Hasegawa, J. Appl. Phys. 66 (1969) 1671.CrossRefGoogle Scholar
  21. 21.
    C. L. Chien, D. Musser, E. M. Gyorgy, R. C. Sherwood, H. S. Chen, F. E. Luborsky and J. L. Walter, Phys. Rev. B 20 (1979) 283.CrossRefGoogle Scholar
  22. 22.
    L. Takács, M. C. Cadeville and I. Vincze, J. Phys. F 5 (1975) 800.CrossRefGoogle Scholar
  23. 23.
    L. Häggström, L. Granäs, R. Wäppling, and S. Devanarayanan, Phys. Scr. 7 (1973) 125.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • R. Singhal
    • 1
  • U. C. Johri
    • 1
  • R. M. Singru
    • 1
  1. 1.Department of PhysicsIndian Institute of TechnologyKanpurIndia

Personalised recommendations