Journal of Materials Science

, Volume 28, Issue 4, pp 955–962 | Cite as

Abrasive wear and craze breakdown in polystyrene

  • A. C. -M. Yang
  • T. W. Wu


The role of craze breakdown during the fracture process of abrasive wear in glassy polystyrene was investigated. At first, the wear resistance, γw, was compared with the craze breakdown strain as a function of molecular weight and diluent concentration. It was found that γw increases with molecular weight and decreases with the diluent concentration. Although craze breakdown strain also increases with molecular weight and decreases with the diluent concentration, the wear data do not converge into a single curve in a plot against the craze breakdown strain. Selected specimens were then studied by micro-indentation and micro-scratching experiments. An analysis of the scratch patterns and contact load at the polymer surface indicated that a critical stress criterion, rather than a critical strain criterion, may be suitable for the onset of the failure process in brittle polymer wear. With this criterion, the critical load for crack opening, τc, can be related to the craze breakdown strain and Young's modulus, and the observed deviation between the craze breakdown strain and γw can be explained.


Polystyrene Wear Resistance Critical Load Critical Stress Abrasive Wear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. C.-M. Yang, E. J. Kramer, C. C. Kuo and S. L. Phoenix, Macromolecules 19 (1986) 2010.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 19 (1986) 2020.CrossRefGoogle Scholar
  3. 3.
    S. Rabinowitz and P. Beardmore, CRC Rev. Macromol. Sci. 1 (1972) 1.Google Scholar
  4. 4.
    R. P. Kambour, J. Polym. Sci. D 7 (1973) 1.Google Scholar
  5. 5.
    A. N. Gent, AMD (Symp. Ser.) (Amer. Soc. Mech. Eng.) 19 (1976) 55.Google Scholar
  6. 6.
    E. J. Kramer, Adv. Polym. Sci. 52/53 (1983) 1.CrossRefGoogle Scholar
  7. 7.
    B. D. Lauterwasser and E. J. Kramer, Philos. Mag. A39 (1979) 469.CrossRefGoogle Scholar
  8. 8.
    A. N. Gent and A. G. Thomas, J. Polym. Sci. A2 10 (1972) 571.CrossRefGoogle Scholar
  9. 9.
    W. Whitney, J. Appl. Phys. 34 (1965) 3653.Google Scholar
  10. 10.
    D. H. Ender and R. D. Andrews, ibid. 36 (1965) 3057.CrossRefGoogle Scholar
  11. 11.
    A. S. Argon, R. D. Andrews, J. A. Godrick and W. Whitney, ibid. 39 (1968) 1899.CrossRefGoogle Scholar
  12. 12.
    E. J. Kramer, J. Macromol. Sci. Phys. B10 (1974) 191.CrossRefGoogle Scholar
  13. 13.
    J. C. M. Li and J. B. C. Wu, J. Mater. Sci. 11 (1976) 445.CrossRefGoogle Scholar
  14. 14.
    J. B. C. Wu and J. C. M. Li, ibid. 11 (1976) 434.CrossRefGoogle Scholar
  15. 15.
    L. L. Berger, Macromolecules 23 (1990) 2926.CrossRefGoogle Scholar
  16. 16.
    A. C.-M. Yang and E. J. Kramer, J. Polym. Sci. Polym. Phys. Ed. 23 (1985) 1353.CrossRefGoogle Scholar
  17. 17.
    T. W. Wu, C. Hwang, J. Lo and P. S. Alexopoulos, Thin Solid Films 166 (1988) 299.CrossRefGoogle Scholar
  18. 18.
    T. W. Wu, R. A. Burn, M. M. Chen and P. S. Alexopoulos, Mater. Res. Soc. Symp. Proc. 130 (1989) 117.CrossRefGoogle Scholar
  19. 19.
    T. W. Wu, J. Mater. Res. 6 (1991) 407.CrossRefGoogle Scholar
  20. 20.
    M. F. Doerner and W. D. Nix, J. Mater. Res. 1 (1986) 601.CrossRefGoogle Scholar
  21. 21.
    G. M. Hamilton and L. E. Goodman, J. Appl. Mech. 33 (1966) 371.CrossRefGoogle Scholar
  22. 22.
    H. Potente and R. Kruger, Farbe und Lack 84 (1918) 72.Google Scholar
  23. 23.
    E. Hornbogen and K. Schafer, in “Fundamentals of Friction and Wear of Materials”, edited by D. A. Rigney (ASM, Metals Park, OH, 1981) p. 409.Google Scholar
  24. 24.
    A. C.-M. Yang and T. W. Wu, Bull. Amer. Phys. Soc. 36 (1991) 685.Google Scholar
  25. 25.
    J. P. Giltrow, Wear 15 (1970) 71.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • A. C. -M. Yang
    • 1
  • T. W. Wu
    • 1
  1. 1.IBM Research DivisionAlmaden Research CenterSan JoseUSA

Personalised recommendations