Advertisement

Journal of Materials Science

, Volume 28, Issue 4, pp 917–926 | Cite as

The microhardness indentation load/size effect in rutile and cassiterite single crystals

  • H. Li
  • R. C. Bradt
Papers

Abstract

The microhardness indentation load/size effect (ISE) on the Knoop microhardness of single crystals of TiO2 and SnO2 has been investigated. Experimental results have been analysed using the classical power law approach and from an effective indentation test load viewpoint. The Hays/Kendall concept of a critical applied test load for the initiation of plastic deformation was considered, but rejected to explain the ISE. A proportional specimen resistance (PSR) model has been proposed that consists of the elastic resistance of the test specimen and frictional effects at the indentor facet/specimen interface during microindentation. The microhardness test load, P, and the resulting indentation size, d, have been found to follow the relationship
$$P = a_1 d + a_2 d^2 = a_1 d + (P_c /d_0^2 ) d^2$$

The ISE is a consequence of the indentation-size proportional resistance of the test specimen as described by a1. a2 is found to be related to the load-independent indentation hardness. It consists of the critical indentation load, Pc, and the characteristic indentation size, do.

Keywords

SnO2 Rutile Test Load Indentation Size Cassiterite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Kick, Leipzig Felix Edition (1885).Google Scholar
  2. 2.
    H. O'Neill, “The Hardness of Metals and its Measurement” (Sherwood, Cleveland, OH, 1934) p. 43.Google Scholar
  3. 3.
    B. W. Mott, “Micro-indentation Hardness Testing” (Butterworths Scientific, London, 1956) p. 101.Google Scholar
  4. 4.
    D. J. Clinton and R. Morrell, Mater. Chem. Phys. 17 (1973) 461.CrossRefGoogle Scholar
  5. 5.
    C. Hays and E. G. Kendall, Metall. 6 (1973) 275.CrossRefGoogle Scholar
  6. 6.
    E. Meyer, Phys. Z. 9 (1908) 66.Google Scholar
  7. 7.
    P. M. Sargent and T. F. Page, Proc. Brit. Ceram. Soc. 26 (1978) 209.Google Scholar
  8. 8.
    J. T. Czernuszka and T. F. Page, J. Mater. Sci. 22 (1987) 3907.CrossRefGoogle Scholar
  9. 9.
    P. N. Kotru, A. K. Razdan and B. M. Wanklyn, ibid. 24 (1989) 793.CrossRefGoogle Scholar
  10. 10.
    H. Li and R. C. Bradt, J. Amer. Ceram. Soc. 73 (1990) 1360.CrossRefGoogle Scholar
  11. 11.
    Idem, ibid. 74 (1991) 1053.CrossRefGoogle Scholar
  12. 12.
    D. R. Tate, Trans. ASM 35 (1945) 374.Google Scholar
  13. 13.
    N. Gane and J. M. Cox, Phil. Mag. 22 (1970) 881.CrossRefGoogle Scholar
  14. 14.
    S. A. Varchenya, F. O. Muktepavel and G. P. Upit, Sov. Phys. Solid State 11 (1970) 2300.Google Scholar
  15. 15.
    G. P. Upit and S. A. Varchenya, in “The Science of Hardness Testing and its Research Applications”, edited by J. H. Westbrook and H. Conrad (ASM, Metals, Park, OH, 1973) p. 135.Google Scholar
  16. 16.
    S. J. Bull, T. F. Page and E. H. Yoffe, Phil. Mag. Lett. 59 (1989) 281.CrossRefGoogle Scholar
  17. 17.
    P. M. Sargent, in “Microindentation Techniques in Materials Science and Engineering”, edited by P. J. Blau and B. R. Lawn, ASTM STP 889 (American Society for Testing and Materials, Philadelphia, PA, 1984) p. 160.Google Scholar
  18. 18.
    N. Gane and F. P. Bowden, J. Appl. Phys. 39 (1968) 1432.CrossRefGoogle Scholar
  19. 19.
    J. L. Loubet, J. M. Georges, O. Marchesini and G. Meille, J. Tribol. 106 (1984) 43.CrossRefGoogle Scholar
  20. 20.
    J. L. Loubet, J. M. Georges and G. Meille, in “Microindentation Techniques in Materials Science and Engineering”, edited by P. J. Blau and B. R. Lawn, ASTM STP 889 (American Society for Testing and Materials, Philadelphia, PA, 1984) p. 72.Google Scholar
  21. 21.
    M. F. Doerner and W. D. Nix, J. Mater. Res. 1 (1986) 601.CrossRefGoogle Scholar
  22. 22.
    G. M. Pharr and R. E. Cook, ibid. 5 (1990) 847.CrossRefGoogle Scholar
  23. 23.
    E. O. Bernhardt, Z. Metallkde 33 (1941) 135.Google Scholar
  24. 24.
    F. Frohlich, P. Grau and W. Grellmann, Phys. Status Solidi 42 (1977) 79.CrossRefGoogle Scholar
  25. 25.
    K. Hirao and M. Tomozawa, J. Amer. Ceram. Soc. 70 (1987) 497.CrossRefGoogle Scholar
  26. 26.
    J. B. Wachtman Jr, W. E. Tefft and D. G. Lam Jr, J. Res. Nat. Bur. Stand. A Phys. Chem. 66A (1962) 465.CrossRefGoogle Scholar
  27. 27.
    E. Chang and E. K. Graham, J. Geophys. Res. 80 (1975) 2595.CrossRefGoogle Scholar
  28. 28.
    M. Atkinson and H. Shi, Mater. Sci. Tech. 5 (1989) 613.CrossRefGoogle Scholar
  29. 29.
    C. A. Brookes, J. B. O'Neill and B. A. W. Redfern, Proc. R. Soc. Lond. A322 (1971) 73.CrossRefGoogle Scholar
  30. 30.
    D. H. Buckley and K. Miyoshi, Wear 100 (1984) 333.CrossRefGoogle Scholar
  31. 31.
    Y. Enomoto and K. Yamanaka, in “Ceramics Databook”, edited by S. Saito and H. Yanagida (Gordon and Breach, New York, 1987) p. 299.Google Scholar
  32. 32.
    H. Li and R. C. Bradt, Mater. Sci. Engng A142 (1991) 51.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • H. Li
    • 1
  • R. C. Bradt
    • 1
  1. 1.The Mackay School of MinesUniversity of NevadaRenoUSA

Personalised recommendations