Journal of Materials Science

, Volume 28, Issue 4, pp 890–900 | Cite as

Rheology of non-Newtonian glass-forming melts

Part I Flow-stress relations
  • I. Gutzow
  • A. Dobreva
  • J. Schmelzer


The stress-induced flow of non-Newtonian glass-forming systems is analysed in order to obtain a general algorithm for describing the kinetics of relaxation and retardation in glass-forming melts. It is shown that the existing empirical relations for plastic, pseudoplastic and dilatant flow can be derived in the framework of the Prandtl-Eyring potential barrier model, which is extended in order to include dilatant effects. The advantages and shortcomings of this molecular model are considered using experimental evidence on the flow of organic polymers, inorganic glasses and metal alloy glass-formers. It is shown that the mathematical formalism following from the potential barrier model can be conveniently used in order to derive the non-linear kinetics of relaxation of simple and polymer glass-forming melts.


Polymer Experimental Evidence Material Processing Potential Barrier Molecular Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Morey, in “Properties of Glass” (Reinhold, New York, 1954) p. 169.Google Scholar
  2. 2.
    M. B. Beaver, in “Encyclopedia of Material Science and Engineering”, Vol. 4, “Mechanical Properties of Polymers” (Pergamon Press, Oxford, 1986) p. 2916.Google Scholar
  3. 3.
    O. V. Mazurin, in “Vitrification” (Nauka, Leningrad, 1986) in Russian.Google Scholar
  4. 4.
    A. Kovacs, J. Aklonis, J. Hutchinson and A. Ramos, Polym. Sci. 17 (1979) 1097.Google Scholar
  5. 5.
    L. Treloar, in “The Physic of Rubber Elasticity” (Clarendon Press, Oxford, 1949).Google Scholar
  6. 6.
    F. Kohlrausch, Pogg. Ann. Phys. Chem. 8 (1876) 332.Google Scholar
  7. 7.
    S. M. Rekhson and O. V. Mazurin, J. Amer. Ceram. Soc. 57 (1974) 327.CrossRefGoogle Scholar
  8. 8.
    T. S. Chow, J. Mater. Sci. 25 (1990) 957.CrossRefGoogle Scholar
  9. 9.
    G. Goldbach and G. Rehage, Reol. Acta 6 (1967) 30.Google Scholar
  10. 10.
    E. Jenckel, Z. Electrochem. Angew. Phys. Chem. 43 (1937) 796.Google Scholar
  11. 11.
    E. Jenckel, in “Die Physik der Hochpolymeren”, edited by A. A. Stuard, 3rd Edn (Springer Verlag, Berlin, 1955) p. 620.Google Scholar
  12. 12.
    E. G. Vostroknutov and G. V. Vinogradov, in “Rheological Foundations of Polymer Processing” (Izd. Chimia, Moscow, 1980) p. 16. in Russian.Google Scholar
  13. 13.
    A. Tobolsky, P. Powell and H. Eyring, in “Chemistry of High Molecules N2”, edited by V. A. Kargin (Inostr. Lit., Moscow, 1948) p. 206, in Russian.Google Scholar
  14. 14.
    M. Doi, J. Polym. Sci. Polym. Phys. 18 (1980) 1005.CrossRefGoogle Scholar
  15. 15.
    Idem, J. Polym. Sci. Polym. Lett. 19 (1981) 265.CrossRefGoogle Scholar
  16. 16.
    I. Gutzow, A. Dobreva and J. Schmelzer, J. Mater. Sci. 28 (1993) 901.CrossRefGoogle Scholar
  17. 17.
    R. Houwink, in “Elastizitat, Plasticitat und Struktur der Materie” (Verl. Th. Steinkopff, Dresden, 1957) p. 69.Google Scholar
  18. 18.
    T. Alfrey, in “Mechanical Behaviour of High Polymers” (Academic Press, New York, 1948) Ch. 2.Google Scholar
  19. 19.
    S. Middlemann, in “The Flow of High Polymers” (Academic Press, New York, 1962) Ch. 4.Google Scholar
  20. 20.
    G. Vinogradov and A. Malkin, “Reology of Polymers” (Chimia, Moscow, 1977) p. 150, in Russian.Google Scholar
  21. 21.
    L. Prandtl, ZAMM 8 (1928) 85.CrossRefGoogle Scholar
  22. 22.
    A. Freudenthal, in “Inelastisches Verhalten von Werkstoffen” (Techn, Berlin, 1955) pp. 109, 191.Google Scholar
  23. 23.
    S. Glasstone, K. Laidler and H. Eyring, in “The Theory of Rate Processes” (McGraw-Hill, London, 1941) pp. 480, 513.Google Scholar
  24. 24.
    W. Kauzmann and H. Eyring, J. Amer. Chem. Soc. 66 (1940) 3113.CrossRefGoogle Scholar
  25. 25.
    T. Ree and H. Eyring, in “Rheology: Theory and Applications”, Vol. 2, edited by F. R. Eirich (Academic Press, New York, 1960) p. 83.Google Scholar
  26. 26.
    J. H. Li and D. R. Uhlmann, J. Non-Cryst. Solids 3 (1970) 127.CrossRefGoogle Scholar
  27. 27.
    M. Goldstein, J. Chem. Phys. 51 (1969) 3728.CrossRefGoogle Scholar
  28. 28.
    F. Bueche, in “Physical Properties of High Polymers” (Interscience, New York, 1962) p. 70.Google Scholar
  29. 29.
    W. Grassley, in “Entanglement Concept in Polymer Rheology”, Advances in Polymer Science, Vol. 16 (Springer, Berlin, 1974) p. 26.Google Scholar
  30. 30.
    M. Doi and S. F. Edwards, J. Chem. Soc. Farad. Trans. 2 74 (1978) 1789.CrossRefGoogle Scholar
  31. 31.
    E. Janke, F. Emde and L. Losch, in “Tafeln hoherer Funktionen” 6 Edn. (Teubner, Stuttgart, 1960).Google Scholar
  32. 32.
    R. V. Torner, in “Theory of Polymer Processing” (Chimia, Moscow, 1972) p. 47, in Russian.Google Scholar
  33. 33.
    W. Ostwald, Kolloid Z. 47 (1929) 176.CrossRefGoogle Scholar
  34. 34.
    Idem, ibid. 36 (1925) 99.CrossRefGoogle Scholar
  35. 35.
    W. L. Willkinson, in “Non Newtonian Fluids, Fluid Mechanics, Mixing and Heat Transfer” (Pergamon Press, London, 1960) Ch. 1.Google Scholar
  36. 36.
    G. M. Bartenev, Vysoko Moleculiarnie Soedinenia 6 (1964) 2155.Google Scholar
  37. 37.
    D. M. Heyes, J. J. Kim, C. J. Montro and T. A. Litovitz, J. Chem. Phys. 73 (1980) 3987.CrossRefGoogle Scholar
  38. 38.
    J. R. Partington, in “An Advanced Treatise on Physical Chemistry”, Vol. 2 (Longmans Green, London, 1955) p. 43.Google Scholar
  39. 39.
    A. Dobreva, D. Georgiev, A. Nikolov and I. Gutzow, paper submitted for publication.Google Scholar
  40. 40.
    R. Wäsche and R. Brückner, ibid. 27 (1986) 80.Google Scholar
  41. 41.
    K. Russew and I. Stoyanova, J. Mater. Sci. Engng A123 (1990) 80.Google Scholar
  42. 42.
    N. E. Gul and V. N. Kuleznev, in “Structure and Mechanical Properties of Polymers” (Vish. Shkola, Moscow, 1966) p. 171, in Russian.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • I. Gutzow
    • 1
  • A. Dobreva
    • 1
  • J. Schmelzer
    • 2
  1. 1.Institute of Physical ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Sektion PhysikUniversität RostockRostockGermany

Personalised recommendations