Journal of Materials Science

, Volume 28, Issue 4, pp 885–889 | Cite as

Effects of hydrogenation of petroleum pitch on mesophase formation

  • K. Azami
  • O. Kato
  • H. Takashima
  • S. Yamamoto
  • Y. Sanada


The effects of hydrogenation of petroleum pitch on mesophase formation have been studied in terms of the hydrogen donor (Da) and acceptor (Aa) abilities of starting pitch, the temperature dependence of mesophase content, the thermal properties of the resultant mesophase pitches with differential scanning calorimetry (DSC), and 13C-NMR spectra of the mesophase pitches in the liquid and solid states. Hydrogenation of petroleum-derived pitch causes a significant increase of (Da) and a clear shift of the mesophase generation temperature to the hightemperature side. Measurement of the characteristics of molecular size for mesophase pitches using DSC has been successfully accomplished. The increase of Da due to hydrogenation cause the production of mesophase having a smaller average molecular size and a more homogeneous molecular size distribution. The decrease of molecular size in the mesophase seems to cause the narrowing of the characteristic peak for mesophase around 180 p.p.m. in 13C-NMR spectra in the liquid state.


Hydrogenation Petroleum Differential Scanning Calorimetry Solid State Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Mochida and Y. Korai, in “Petroleum-Derived Carbons” (American Chemical Society, Washington, 1986) p. 29.CrossRefGoogle Scholar
  2. 2.
    H. Marsh and C. S. Latham, ibid“ p. 7.Google Scholar
  3. 3.
    I. C. Lewis, Carbon 18 (1980) 191.CrossRefGoogle Scholar
  4. 4.
    R. A. Greinke and I. C. Lewis, ibid. 22 (1984) 305.CrossRefGoogle Scholar
  5. 5.
    I. C. Lewis, in Proceedings of 18th Biennial Conference on Carbon, Massachusetts (American Carbon Society, Worcester, 1987) p. 183.Google Scholar
  6. 6.
    I. Mochida, E. Nakamura, K. Maeda and K. Takeshita, Carbon 14 (1976) 123.CrossRefGoogle Scholar
  7. 7.
    I. Mochida, T. Ando, K. Maeda, H. Fujitu and K. Takeshita, ibid. 18 (1980) 131.CrossRefGoogle Scholar
  8. 8.
    I. Mochida, K. Simizu and Y. Korai, ibid. 26 (1988) 843.CrossRefGoogle Scholar
  9. 9.
    H. Marsh and P. L. Warker Jr, in “Chemistry and Physics of Carbon”, Vol. 15 (Dekker, New York, 1979) p. 229.Google Scholar
  10. 10.
    J. Lahaye, P. Ehrbuger, J. L. Saint-Romain and P. Couderc, Fuel 66 (1987) 1467.CrossRefGoogle Scholar
  11. 11.
    K. Azami, S. Yamamoto and Y. Sanada, Carbon 29 (1991) 943.CrossRefGoogle Scholar
  12. 12.
    T. Yokono, H. Marsh and M. Yokono, Fuel 60 (1981) 706.Google Scholar
  13. 13.
    T. Yokono, T. Obara, S. Iyama, J. Yamada and Y. Sanada, J. Fuel Soc. Jpn 63 (1984) 239.CrossRefGoogle Scholar
  14. 14.
    S. Iyama, T. Yokono and Y. Sanada, Carbon 24 (1986) 423.CrossRefGoogle Scholar
  15. 15.
    T. Yokono, T. Obara, S. Iyama and Y. Sanada, ibid. 22 (1984) 623.CrossRefGoogle Scholar
  16. 16.
    K. Azami, T. Yokono, Y. Sanada and S. Uemura, ibid. 27 (1989) 177.CrossRefGoogle Scholar
  17. 17.
    T. G. Fox Jr and P. J. Flory, J. Appl. Phys. 21 (1950) 581.CrossRefGoogle Scholar
  18. 18.
    A. Abragam, “Principles of Nuclear Magnetism” (Oxford University Press New York, 1961) p. 424.Google Scholar
  19. 19.
    F. W. Wehrli and T. Wirthlin, “Interpretation of Carbon-13 NMR Spectra” (Heyden & Son, London, 1978) supplement chart.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • K. Azami
    • 1
  • O. Kato
    • 1
  • H. Takashima
    • 1
  • S. Yamamoto
    • 1
  • Y. Sanada
    • 2
  1. 1.Central Technical Research LaboratoryNippon Oil Co. LtdYokohamaJapan
  2. 2.Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations