Advertisement

Journal of Materials Science

, Volume 28, Issue 4, pp 880–884 | Cite as

Displacement control crack-growth instability in an elastic-softening material

Part II Analysis for double-edge-notch configuration
  • E. Smith
Papers

Abstract

The criterion for crack growth instability in an elastic-softening material that is subjected to displacement control loading conditions is examined. A theoretical analysis of the model of a solid containing two symmetrically situated deep cracks and with tensile loading of the remaining ligament, defines the criterion for crack growth instability. The criterion is expressed in terms of the material's softening characteristics and the solid's geometrical parameters. The analysis covers the complete spectrum of material behaviour from the case where the softening zone is very small to the case where instability does not occur until the softening zone traverses the ligament between the crack tips.

Keywords

Polymer Theoretical Analysis Geometrical Parameter Material Processing Material Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. S. Majumdar, A. R. Rosenfield and W. H. Duckworth, Engng Fract. Mech. 31 (1988) 683.CrossRefGoogle Scholar
  2. 2.
    R. M. L. Foote, Y. W. Mai and B. Cotterell, J. Mech. Phys. Solids 34 (1986) 593.CrossRefGoogle Scholar
  3. 3.
    E. Smith, Theor. Appl. Fract. Mech. 11 (1989) 59.CrossRefGoogle Scholar
  4. 4.
    Idem, ibid. 11 (1989) 65.CrossRefGoogle Scholar
  5. 5.
    Idem, Engng Fract. Mech., 37 (1990) 259.CrossRefGoogle Scholar
  6. 6.
    Idem, Theor. Appl. Fract. Mech., 17 (1992) 83.CrossRefGoogle Scholar
  7. 7.
    A. Carpinteri, J. Mech. Phys. Solids 37 (1989) 567.CrossRefGoogle Scholar
  8. 8.
    Idem, J. Mater. Sci. 28 (1993).Google Scholar
  9. 9.
    D. S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100.CrossRefGoogle Scholar
  10. 10.
    B. A. Bilby, A. H. Cottrell and K. H. Swinden, Proc. Roy. Soc. A 272 (1963) 304.CrossRefGoogle Scholar
  11. 11.
    E. Smith, Int. J. Fract. 23 (1983) 213.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • E. Smith
    • 1
  1. 1.Materials Science CentreManchester University/UMISTManchesterUK

Personalised recommendations